Join
Welcome! If you're interested in our lab, please read below and apply through this form.
πΉ Application Form (Click)
Graduate Students
For All Students:
As a faculty member in GIST AI, I have a few slots available to host PhD students each year. Before reaching out, please check whether your research interests align with our recent works (publications after 2024)
- I generally accept PhD students who have either conducted research with me before or have at least one first-authored publication in a venue relevant to our field. (e.g., NeurIPS, AAAI, ICLR, ICML, KDD, etc.)
- I also accept MS students who would like to continue their academic career. MS students in our lab are expected to publish (or have accepted) at least one first-authored paper in one of the above conferences before their thesis defense.
Please check the links below periodically for information such as official application periods and required documents:
- Call For International MS/PhD Applicants: [Link] [Apply]
- Call For Korean MS/PhD Applicants: [Link]
- GIFT Program for GIST Undergrads [Link]
Due to the large number of requests, I may not be able to respond to all emails. After submitting your official application, please send your CV through this form so that I can track your interest. Please note that I only write recommendation letters for students I have worked with, so be sure to obtain recommendations from your current mentors.
μ°κ΅¬μ€ μ§μ κ΄λ ¨ FAQ (ν΄λ¦)
Q) μ§μ νκ³Όλ 무μμΌλ‘ ν΄μΌ νλμ?
μ λ GIST AIμ΅ν©νκ³Ό μ μκ΅μμΌλ‘ μμ¬/λ°μ¬/μλ°ν΅ν©κ³Όμ νμμ λ§€λ μ λ°ν μ μμ΅λλ€. κ²Έμκ΅μμΌλ‘ λ±λ‘λμ΄ μλ μ κΈ°μ μμ»΄ν¨ν°κ³΅νλΆμμλ λνμ νμμ μ λ°ν μ μμ΅λλ€.
Q) λνμ μ§μμ μ€λΉνκ³ μλ 4νλ νμμ λλ€, κ΅μλ μ°κ΅¬μ€μ λ€μ΄κ°κΈ° μν μ μ°¨λ μ΄λ»κ² λλμ?
GIST AIμ΅ν©νκ³Όμ λ¨Όμ ν©κ²©ν΄μΌ μ ν¬ μ°κ΅¬μ€μ λ€μ΄μ¬ μ μμ΅λλ€. λνμ λ©΄μ μ νμ λ³΄ν΅ 15-20λΆκ° μ§νλλ©°, μκ°ν κ³Όλͺ©κ³Ό κ΄λ ¨ν λ΄μ©μ΄λ, μ°κ΅¬ λ° νλ‘μ νΈ κ²½νμ μ§λ¬Έν©λλ€. λνμ μ νκ³Ό κ΄λ ¨ν μμΈν μ¬νμ λ΄/κ°μνκΈ° μ μ μ μ μ§ννλ μ€νλ© νμ¬λ₯Ό ν΅ν΄ μ μ μμ΅λλ€. λνμ ν©κ²© μ΄ν μ°κ΅¬μ€ λ©€λ²λ₯Ό μ λ°ν λμλ νΈκΈ°μ¬μ΄ λ§κ³ , μν, μμ΄, κ°λ°, κΈμ°κΈ° κ΄λ ¨ μλμ΄ λμ νμμ μ°λν©λλ€.
Q) TOκ° λ¨μμλμ§ μ μ μλμ?
λμ²΄λ‘ μ ν¬ μ°κ΅¬μ€μ 1λ μ 체 κ΅λΉ TOλ μλ°ν΅ν©(or λ°μ¬) 2-3λͺ μ λλ€. μΌλ°μ μΌλ‘ λ΄νκΈ°μ 2λͺ , κ°μνκΈ°μ 1λͺ μ μ λ°νκ² λ©λλ€. μΈκ΅μΈ νμμ κ²½μ°λ λ΄κ΅μΈ μ μ μΈ TOλ₯Ό νμ©νμ¬ μ λ°ν μ μμ΅λλ€.
Q) μ¬μ 컨νμ΄ νμνκ³ λμμ΄ λλμ?
μ¬μ 컨νμ AIμ΅ν©νκ³Ό μ μ ν©κ²© νλ₯ μλ μν₯μ μ£Όμ§ μμ΅λλ€λ§, ν©κ²©μ μ μ μ΄ν μ ν¬ μ°κ΅¬μ€μ λ€μ΄μ€λ λ°λ λμμ΄ λ μ μμ΅λλ€. μ ν¬ λ©μ κ΄μ¬μ΄ μλ νμμ μ μλ₯Ό μ§ννλ©°, κ΅¬κΈ νΌμ ν΅ν΄ μ§μμλ₯Ό μ μν΄ μ£Όμλ©΄ μ΄ν΄ 보λλ‘ νκ² μ΅λλ€.
Q) λ©΄λ΄μ΄ κ°λ₯νκ°μ?
μ€νλ© νμ¬λ₯Ό ν΅ν΄ μ°κ΅¬μ€ μ§ν κ΄λ ¨ λ©΄λ΄μ λλκ³ μμ΅λλ€. κ³Όλͺ© μκ°μμ΄λΌλ©΄ κ°μ μκ° μ΄νμ κ°λ¨νκ² μ΄μΌκΈ°ν΄λ³Ό μ μμ΅λλ€.
Q) λνμ μ μλ₯Ό μ€λΉνκΈ° μ νλΆμ μΈν΄μ΄ κ°λ₯νκ°μ?
- GIST νλΆμλ€μ κ²½μ°μλ λκ° G-SURF, νμ¬λ Όλ¬Έ 1, νμ¬λ Όλ¬Έ 2λ₯Ό ν΅ν΄ μ°κ΅¬μ€ μνμ μμν©λλ€. μ ν¬ μ°κ΅¬μ€μ κ΄μ¬μ΄ μλ GIST νλΆμμ νμ΄μ§ μ΅μλ¨μ κ°μ΄λλΌμΈμ μ½μ΄λ³΄μκ³ κ΅¬κΈ νΌμ ν΅ν΄ μ§μν΄ μ£ΌμκΈ° λ°λλλ€.
- μ¬μ€μ κ΅λ΄ ν λν νλΆμμ μ ν¬ μ°κ΅¬μ€μμ μΈν΄μ μννκΈ°λ μ΄λ ΅μ΅λλ€. 2024λ κΈ°μ€ GIST AIλνμμ 곡μ μΈν΄μ νλ‘κ·Έλ¨μ μ΄μνκ³ μμ§ μμΌλ©°, νμ¬λ μ°κ΅¬μ€ κ·λͺ¨κ° μ»€μ Έμ ν λν νλΆμμ μ§λν μκ°μ μ¬μ κ° μλ μν©μ λλ€.
- λ€λ§, μΈκ΅ λν νμμ κ²½μ°μλ νκ΅μμ μ£Όκ΄νλ Global Intern Programμ ν΅ν΄ μ¬λ¦ λ°©ν 8μ£Όκ° μ°κ΅¬μ€μ λ°©λ¬Έν μ μμ΅λλ€. κ΄μ¬μ΄ μλ νμμ μΌμ μ λ§μΆ GIP νλ‘κ·Έλ¨μ μ§μν΄ μ£ΌμκΈ° λ°λλλ€.
Q) λνμμμ΄ λλ©΄ νλΆμ λμ κ°μ₯ λ€λ₯Έ μ μ΄ λ¬΄μμΌκΉμ?
λνμμμ΄ λλ©΄ 곡λΆνκ³ μ°κ΅¬ν λ΄μ©μ μ£ΌκΈ°μ μΌλ‘ κ΅μλμ΄λ μ°κ΅¬μ€ ꡬμ±μμκ² κ³΅μ νκ² λ©λλ€. λ°λΌμ μ λλ κΈμ΄λ λ°νλ₯Ό ν΅ν΄, μκ³ μλ λ΄μ©μ λ Όλ¦¬μ μΌλ‘ μ λ¬νλ λ₯λ ₯μ΄ μ€μνλ€ μκ°ν©λλ€. μ΄κ²μ΄ μ§μμ μ΅λνλ λ° μ§μ€νμλ νλΆμκ³Ό κ°μ₯ ν¬κ² λ€λ₯Έ μ μ΄λΌ μκ°ν©λλ€.
Q) AIλ₯Ό μ°κ΅¬νκ³ μΆμ νμμ λλ€, 곡λΆν λ§ν κ΅μ¬λ κ°μκ° μ΄λ€ κ² μμκΉμ?
- νλΆ μ νλ νμμ΄λΌλ©΄ μ νλμν, μκ³ λ¦¬μ¦ λ±μ ν¬ν¨ν κΈ°λ³ΈκΈ°λ₯Ό ννν κ°μΆλ κ²μ΄ 무μλ³΄λ€ μ€μν κ² κ°μ΅λλ€.
- κΈ°κ³νμ΅ μ λ¬Έμλ‘λ Introduction to Statistical Learning μ± μ μΆμ²ν©λλ€. μ΄νμλ μ λ§μ λ§μΌλ©΄μ, νμ¬ λ°°κ²½μ§μμΌλ‘ μλ ν μ μλ μ± μ μ ννμ¬ κ³΅λΆνλ©΄ μ’κ² μ΅λλ€. λ리 μ¬μ©λλ κ΅κ³Όμλ‘λ Probabilistic machine learning, Elements of Statistical Learning, Pattern Recognition and Machine Learning λ±μ΄ μμ΅λλ€.
- μ΅μ νμ κ²½μ°μλ An Introduction to Optimization (Chong & Zak), Convex Optimization (Boyd and Vandenberghe) μμλ‘ κ³΅λΆνλ©΄ μ’μ΅λλ€.
- κ΅κ³Όμλ₯Ό 곡λΆνκΈ°μ μμ, μμ μ μμ£Όλ‘ μ΄ν΄λ³΄κ³ μΆμ λΆμ Googleμ Machine Learning Crash Courseκ³Ό κ°μ 15μκ° λ΄μΈμ 컨ν μΈ λ, κ΄μ¬ λΆμΌμ λ§λ Coursera λ° μ€ν ν¬λ λνμ CS2** κ°μλ₯Ό μΆμ²ν©λλ€ (CS221: AI, CS224r: RL, CS224n: NLP, CS224w: Graph, CS231n: CV).
- λ¨Έμ λ¬λ λͺ¨λΈμ λ°°ν¬νκ³ μ΄μνλ κ³Όμ μμ μκΈΈ λ²ν λ¬Έμ λ₯Ό μ΄ν΄λ³΄λ μ©λλ‘λ Designing Machine Learning Systems μ± μ μΆμ²ν©λλ€.
Q) μ΄λ€ μ°κ΅¬λ₯Ό μννκ³ μλμ?
μκ°μ κ·λ© μΆλ‘ λ° μ°½μμ μν λ¬Έμ ν΄κ²°μ μν μ°κ΅¬λ₯Ό μννκ³ μμ΅λλ€. μΈκ°μ λ¬Έμ νμ΄ λ°©μμ λͺ¨μ¬ν λ΄λ‘-μ¬λ³Όλ¦ νλ‘κ·Έλ¨ ν©μ± (κ°ννμ΅, μΈμ΄λͺ¨λΈ, κ°λ κ·Έλν νμ©) λ° λ°λμ§ν ννμ λ°μ΄ν° μμ§μ μν κ²μ ννμ νλ«νΌ, νμ΅ νκ²½ λ° νκ° μμ€ν ꡬμΆμ μ£Όλ ₯νκ³ μμ΅λλ€ (μΈμ§κ³Όνμ μμλ₯Ό κ³ λ €ν μΉ μ ν리μΌμ΄μ κ°λ°, μλνλ λ μ΄λΈλ§ κΈ°λ² λ§λ ¨). μ°κ΅¬μ€μ μ΅κ·Ό λ Όλ¬Έλ€μ μ΄κΈ° κ²°κ³Όλ¬Όλ€μ΄ μ€λ ΈμΌλ μ°Έκ³ νμλ©΄ μ’κ² μ΅λλ€.
Q) νμ μ΄ κ°λ₯νκ°μ?
μΊκΈ μ»΄νν°μ κ²½νμ΄ μΆμ€νκ±°λ, μΈκ³΅μ§λ₯/HCI λΆμΌ μ°μ νμ λν λ Όλ¬Έμ λ€μ μμ±ν΄λ³Έ(λ°μ¬ κ³ λ μ°¨) λΆκ³Όμ νμ κΈ°νλ₯Ό μ΄μ΄λκ³ μμ΅λλ€. μ ν¬ μ°κ΅¬μ€κ³Ό νμ μ΄ κ°λ₯ν μ£Όμ λ ARC λ¬Έμ ν΄κ²°μ μν World Models, Program Synthesis, Casual RL, Graph representation learning, UX/UI κ°μ λ±μ΄ μμ΅λλ€. λ§μ°¬κ°μ§λ‘ κ΅¬κΈ νΌ μμ±μ λΆνλ립λλ€.
Q) μ°κ΅¬μ€ 컨νμ μν κ΅¬κΈ νΌμ μ΄λ μλμ?
λ³Έ νμ΄μ§ μ΅μλ¨, νΉμ λ€μ λ§ν¬λ₯Ό ν΅ν΄ νμΈνμ€ μ μμ΅λλ€.
Undergraduate Students
Undergraduate students may join our lab through Undergraduate Thesis I/II (3 credits each) or apply for G-SURF. As an undergraduate students in our lab, you will participate in research discussions, build prototypes, host events, and write documents to help scale our projects and team efforts.
Required Qualifications
- Self-motivated individuals who enjoy tackling unsolved challenges
- Solid foundations in mathematics and computer science
- Strong technical, analytical, and communication skills
- Commit 16+ hours/week when you are with us
Preferred Qualifications
- Avid reader (e.g., enjoys books like GΓΆdel, Escher, Bach)
- Passionate writer (e.g., blogger or book author)
- Machine learner (e.g., builds off-the-wall ML projects, contributes to open source)
- Full-stack developer (e.g., turns side projects into production-ready systems)
- Medal chaser (e.g., enjoys winning in Kaggle, ICPC, or Codeforces)
- Skilled puzzle solver or competitive gamer (e.g., high elo in LoL, Chess, Go)
General tips
- Take as many math courses as well as CS/EE/AI courses as possible; this will enable you to investigate a wider range of topics. Donβt be afraid to implement your ideas. If you are interested in our research, familiarizing yourself with this Kaggle competition would be helpful.
Students outside Korea
- Thank you for your interest in our lab. GIST offers an exchange program for regular semesters and a Global Internship Program (GIP) for summer vacations. You can apply for these programs by including my name in your application. The GIP program facilitates an 8-week visit to GIST over the summer, with the application period beginning in February. For more information, please visit this website: https://ipa.gist.ac.kr/. (Due to the large number of requests, I cannot write a letter of recommendation for GIP program.)
Lab Interview Process
In addition to the official department admission procedures, we conduct our own lab-specific interview process. This helps us better understand potential lab members and ensure a good fit. Our process consists of a one-hour interview with the applicant and current lab members.
During this interview, I generally ask the following questions:
- How would you describe yourself?
- Can you tell us about your project/research experience?
- What potential research ideas would you like to explore? (It would be great if you could align your ideas with our previous works)
- How do you think you can contribute to our lab?
- What are your career plans after completing your MS/PhD degree?
Previous Projects
Listed below are some projects I worked with (undergraduate) students. See my publication for a complete list.
At GIST
- Leveraging GIF to elevate AI reasoning [arXiv]
- Skill Reinforcement Learning [arXiv]
- Unsupervised Environment Design [arXiv]
- Misalignment analysis [KDD-25]
- Diffusion-based Reinforcement Learning on ARC-AGI [arXiv]
- Evaluating reasoning capabilities of LLMs [ACM-TIST-25]
- Multiple-choice analogy benchmark [EMNLP-24]
- Gym environment for RL training on ARC-AGI [CoLLAs-24]
- Footage from IJCAI-24 [IJCAI-24]
- Game with Abstraction and Reasoning Corpus [IJCAI-24]
- Seven papers at Korea Software Congress 2023 [KSC-23]
- Mimicking Human Solutions with Object-Centric Decision Transformer [ICMLW-23]
- Abstraction and Reasoning Challenge with Decision Transformer [KCC-23]
- Object Detection on ARC Problem Using Graph Abstraction [KCC-23]
- Engineering Prompts for the ARC Challenge [KCC-23]
Before GIST
- Playgrounds for Abstraction and Reasoning [NeurIPSWβ22] [KSCβ22] [Poster] [Happy ARC Day]
- 2022 Summer Internβs talk [Subin-5min] [Prin-5min] [Shiekh-5min]
- Classification of Goods Using Text Descriptions With Sentences Retrieval [TIST]
- Customs Fraud Detection in the Presence of Concept Drift [ICDMWβ21] [Video]
- Response to COVID-19 with Probabilistic Programming [Frontiers in Public Healthβ22] [GitHub]
- Hyperbolic Interaction Model for Category Classification in E-Commerce [KSCβ21] [Video]
- Active Learning for Custom Fraud Detection [TKDEβ22]
- Hierarchical POI Embedding with Heterogeneous Information [Slides] [GitHub]
- Customer Revisit Prediction using Macroscale Mobility [KSCβ19] [URP Report]