
Tree-based Methods

• Here we describe tree-based methods for regression and
classification.

• These involve stratifying or segmenting the predictor space
into a number of simple regions.

• Since the set of splitting rules used to segment the
predictor space can be summarized in a tree, these types of
approaches are known as decision-tree methods.

1 / 51

Pros and Cons

• Tree-based methods are simple and useful for
interpretation.

• However they typically are not competitive with the best
supervised learning approaches in terms of prediction
accuracy.

• Hence we also discuss bagging, random forests, and
boosting. These methods grow multiple trees which are
then combined to yield a single consensus prediction.

• Combining a large number of trees can often result in
dramatic improvements in prediction accuracy, at the
expense of some loss interpretation.

2 / 51

The Basics of Decision Trees

• Decision trees can be applied to both regression and
classification problems.

• We first consider regression problems, and then move on to
classification.

3 / 51

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its

4 / 51

Decision tree for these data

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

5 / 51

Details of previous figure

• For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he
has played in the major leagues and the number of hits that he
made in the previous year.

• At a given internal node, the label (of the form Xj < tk)
indicates the left-hand branch emanating from that split, and
the right-hand branch corresponds to Xj ≥ tk. For instance, the
split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand
branch corresponds to Years>=4.5.

• The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for
the observations that fall there.

6 / 51

Results

• Overall, the tree stratifies or segments the players into
three regions of predictor space: R1 ={X | Years< 4.5},
R2 ={X | Years>=4.5, Hits<117.5}, and R3 ={X |
Years>=4.5, Hits>=117.5}.

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

7 / 51

Terminology for Trees

• In keeping with the tree analogy, the regions R1, R2, and
R3 are known as terminal nodes

• Decision trees are typically drawn upside down, in the
sense that the leaves are at the bottom of the tree.

• The points along the tree where the predictor space is split
are referred to as internal nodes

• In the hitters tree, the two internal nodes are indicated by
the text Years<4.5 and Hits<117.5.

8 / 51

Interpretation of Results

• Years is the most important factor in determining Salary,
and players with less experience earn lower salaries than
more experienced players.

• Given that a player is less experienced, the number of Hits
that he made in the previous year seems to play little role
in his Salary.

• But among players who have been in the major leagues for
five or more years, the number of Hits made in the
previous year does affect Salary, and players who made
more Hits last year tend to have higher salaries.

• Surely an over-simplification, but compared to a regression
model, it is easy to display, interpret and explain

9 / 51

Details of the tree-building process

1. We divide the predictor space — that is, the set of possible
values for X1, X2, . . . , Xp — into J distinct and
non-overlapping regions, R1, R2, . . . , RJ .

2. For every observation that falls into the region Rj , we
make the same prediction, which is simply the mean of the
response values for the training observations in Rj .

10 / 51

More details of the tree-building process

• In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional
rectangles, or boxes, for simplicity and for ease of
interpretation of the resulting predictive model.

• The goal is to find boxes R1, . . . , RJ that minimize the
RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2,

where ŷRj
is the mean response for the training

observations within the jth box.

11 / 51

More details of the tree-building process

• Unfortunately, it is computationally infeasible to consider
every possible partition of the feature space into J boxes.

• For this reason, we take a top-down, greedy approach that
is known as recursive binary splitting.

• The approach is top-down because it begins at the top of
the tree and then successively splits the predictor space;
each split is indicated via two new branches further down
on the tree.

• It is greedy because at each step of the tree-building
process, the best split is made at that particular step,
rather than looking ahead and picking a split that will lead
to a better tree in some future step.

12 / 51

Details— Continued

• We first select the predictor Xj and the cutpoint s such
that splitting the predictor space into the regions
{X|Xj < s} and {X|Xj ≥ s} leads to the greatest possible
reduction in RSS.

• Next, we repeat the process, looking for the best predictor
and best cutpoint in order to split the data further so as to
minimize the RSS within each of the resulting regions.

• However, this time, instead of splitting the entire predictor
space, we split one of the two previously identified regions.
We now have three regions.

• Again, we look to split one of these three regions further,
so as to minimize the RSS. The process continues until a
stopping criterion is reached; for instance, we may continue
until no region contains more than five observations.

13 / 51

Predictions

• We predict the response for a given test observation using
the mean of the training observations in the region to
which that test observation belongs.

• A five-region example of this approach is shown in the next
slide.

14 / 51

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

15 / 51

Details of previous figure

Top Left: A partition of two-dimensional feature space that
could not result from recursive binary splitting.

Top Right: The output of recursive binary splitting on a
two-dimensional example.

Bottom Left: A tree corresponding to the partition in the top
right panel.

Bottom Right: A perspective plot of the prediction surface
corresponding to that tree.

16 / 51

Pruning a tree

• The process described above may produce good predictions
on the training set, but is likely to overfit the data, leading
to poor test set performance.Why?

• A smaller tree with fewer splits (that is, fewer regions
R1, . . . , RJ) might lead to lower variance and better
interpretation at the cost of a little bias.

• One possible alternative to the process described above is
to grow the tree only so long as the decrease in the RSS
due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too
short-sighted: a seemingly worthless split early on in the
tree might be followed by a very good split — that is, a
split that leads to a large reduction in RSS later on.

17 / 51

Pruning a tree

• The process described above may produce good predictions
on the training set, but is likely to overfit the data, leading
to poor test set performance.Why?

• A smaller tree with fewer splits (that is, fewer regions
R1, . . . , RJ) might lead to lower variance and better
interpretation at the cost of a little bias.

• One possible alternative to the process described above is
to grow the tree only so long as the decrease in the RSS
due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too
short-sighted: a seemingly worthless split early on in the
tree might be followed by a very good split — that is, a
split that leads to a large reduction in RSS later on.

17 / 51

Pruning a tree— continued

• A better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree

• Cost complexity pruning — also known as weakest link
pruning — is used to do this

• we consider a sequence of trees indexed by a nonnegative
tuning parameter α. For each value of α there corresponds
a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i: xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible. Here |T | indicates the number of
terminal nodes of the tree T , Rm is the rectangle (i.e. the
subset of predictor space) corresponding to the mth
terminal node, and ŷRm is the mean of the training
observations in Rm.

18 / 51

Choosing the best subtree

• The tuning parameter α controls a trade-off between the
subtree’s complexity and its fit to the training data.

• We select an optimal value α̂ using cross-validation.

• We then return to the full data set and obtain the subtree
corresponding to α̂.

19 / 51

Summary: tree algorithm

1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has
fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. For each
k = 1, . . . ,K:

3.1 Repeat Steps 1 and 2 on the K−1
K th fraction of the training

data, excluding the kth fold.
3.2 Evaluate the mean squared prediction error on the data in

the left-out kth fold, as a function of α.

Average the results, and pick α to minimize the average
error.

4. Return the subtree from Step 2 that corresponds to the
chosen value of α.

20 / 51

Baseball example continued

• First, we randomly divided the data set in half, yielding
132 observations in the training set and 131 observations in
the test set.

• We then built a large regression tree on the training data
and varied α in in order to create subtrees with different
numbers of terminal nodes.

• Finally, we performed six-fold cross-validation in order to
estimate the cross-validated MSE of the trees as a function
of α.

21 / 51

Baseball example continued
|

Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

22 / 51

Baseball example continued

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training

Cross−Validation

Test

23 / 51

Classification Trees

• Very similar to a regression tree, except that it is used to
predict a qualitative response rather than a quantitative
one.

• For a classification tree, we predict that each observation
belongs to the most commonly occurring class of training
observations in the region to which it belongs.

24 / 51

Details of classification trees

• Just as in the regression setting, we use recursive binary
splitting to grow a classification tree.

• In the classification setting, RSS cannot be used as a
criterion for making the binary splits

• A natural alternative to RSS is the classification error rate.
this is simply the fraction of the training observations in
that region that do not belong to the most common class:

E = 1−max
k

(p̂mk).

Here p̂mk represents the proportion of training observations
in the mth region that are from the kth class.

• However classification error is not sufficiently sensitive for
tree-growing, and in practice two other measures are
preferable.

25 / 51

Gini index and Deviance
• The Gini index is defined by

G =

K∑
k=1

p̂mk(1− p̂mk),

a measure of total variance across the K classes. The Gini
index takes on a small value if all of the p̂mk’s are close to
zero or one.

• For this reason the Gini index is referred to as a measure of
node purity — a small value indicates that a node contains
predominantly observations from a single class.

• An alternative to the Gini index is cross-entropy, given by

D = −
K∑
k=1

p̂mk log p̂mk.

• It turns out that the Gini index and the cross-entropy are
very similar numerically.

26 / 51

Gini index and Deviance
• The Gini index is defined by

G =

K∑
k=1

p̂mk(1− p̂mk),

a measure of total variance across the K classes. The Gini
index takes on a small value if all of the p̂mk’s are close to
zero or one.

• For this reason the Gini index is referred to as a measure of
node purity — a small value indicates that a node contains
predominantly observations from a single class.

• An alternative to the Gini index is cross-entropy, given by

D = −
K∑
k=1

p̂mk log p̂mk.

• It turns out that the Gini index and the cross-entropy are
very similar numerically.

26 / 51

Example: heart data

• These data contain a binary outcome HD for 303 patients
who presented with chest pain.

• An outcome value of Yes indicates the presence of heart
disease based on an angiographic test, while No means no
heart disease.

• There are 13 predictors including Age, Sex, Chol (a
cholesterol measurement), and other heart and lung
function measurements.

• Cross-validation yields a tree with six terminal nodes. See
next figure.

27 / 51

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes

Yes

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

28 / 51

Trees Versus Linear Models

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

Top Row: True linear boundary; Bottom row: true non-linear
boundary.

Left column: linear model; Right column: tree-based model

29 / 51

Advantages and Disadvantages of Trees

s Trees are very easy to explain to people. In fact, they are
even easier to explain than linear regression!

s Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

s Trees can be displayed graphically, and are easily
interpreted even by a non-expert (especially if they are
small).

s Trees can easily handle qualitative predictors without the
need to create dummy variables.

t Unfortunately, trees generally do not have the same level of
predictive accuracy as some of the other regression and
classification approaches seen in this book.

However, by aggregating many decision trees, the predictive
performance of trees can be substantially improved. We
introduce these concepts next.

30 / 51

Bagging

• Bootstrap aggregation, or bagging, is a general-purpose
procedure for reducing the variance of a statistical learning
method; we introduce it here because it is particularly
useful and frequently used in the context of decision trees.

• Recall that given a set of n independent observations
Z1, . . . , Zn, each with variance σ2, the variance of the mean
Z̄ of the observations is given by σ2/n.

• In other words, averaging a set of observations reduces
variance. Of course, this is not practical because we
generally do not have access to multiple training sets.

31 / 51

Bagging— continued

• Instead, we can bootstrap, by taking repeated samples
from the (single) training data set.

• In this approach we generate B different bootstrapped
training data sets. We then train our method on the bth
bootstrapped training set in order to get f̂∗b(x), the
prediction at a point x. We then average all the predictions
to obtain

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x).

This is called bagging.

32 / 51

Bagging classification trees

• The above prescription applied to regression trees

• For classification trees: for each test observation, we record
the class predicted by each of the B trees, and take a
majority vote: the overall prediction is the most commonly
occurring class among the B predictions.

33 / 51

Bagging the heart data

0 50 100 150 200 250 300

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Trees

E
rr

or

Test: Bagging
Test: RandomForest
OOB: Bagging
OOB: RandomForest

34 / 51

Details of previous figure

Bagging and random forest results for the Heart data.

• The test error (black and orange) is shown as a function of
B, the number of bootstrapped training sets used.

• Random forests were applied with m =
√
p.

• The dashed line indicates the test error resulting from a
single classification tree.

• The green and blue traces show the OOB error, which in
this case is considerably lower

35 / 51

Out-of-Bag Error Estimation

• It turns out that there is a very straightforward way to
estimate the test error of a bagged model.

• Recall that the key to bagging is that trees are repeatedly
fit to bootstrapped subsets of the observations. One can
show that on average, each bagged tree makes use of
around two-thirds of the observations.

• The remaining one-third of the observations not used to fit
a given bagged tree are referred to as the out-of-bag (OOB)
observations.

• We can predict the response for the ith observation using
each of the trees in which that observation was OOB. This
will yield around B/3 predictions for the ith observation,
which we average.

• This estimate is essentially the LOO cross-validation error
for bagging, if B is large.

36 / 51

Random Forests

• Random forests provide an improvement over bagged trees
by way of a small tweak that decorrelates the trees. This
reduces the variance when we average the trees.

• As in bagging, we build a number of decision trees on
bootstrapped training samples.

• But when building these decision trees, each time a split in
a tree is considered, a random selection of m predictors is
chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors.

• A fresh selection of m predictors is taken at each split, and
typically we choose m ≈ √p — that is, the number of
predictors considered at each split is approximately equal
to the square root of the total number of predictors (4 out
of the 13 for the Heart data).

37 / 51

Example: gene expression data

• We applied random forests to a high-dimensional biological
data set consisting of expression measurements of 4,718
genes measured on tissue samples from 349 patients.

• There are around 20,000 genes in humans, and individual
genes have different levels of activity, or expression, in
particular cells, tissues, and biological conditions.

• Each of the patient samples has a qualitative label with 15
different levels: either normal or one of 14 different types of
cancer.

• We use random forests to predict cancer type based on the
500 genes that have the largest variance in the training set.

• We randomly divided the observations into a training and a
test set, and applied random forests to the training set for
three different values of the number of splitting variables m.

38 / 51

Results: gene expression data

0 100 200 300 400 500

0
.2

0
.3

0
.4

0
.5

Number of Trees

T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

m=p

m=p/2

m= p

39 / 51

Details of previous figure

• Results from random forests for the fifteen-class gene
expression data set with p = 500 predictors.

• The test error is displayed as a function of the number of
trees. Each colored line corresponds to a different value of
m, the number of predictors available for splitting at each
interior tree node.

• Random forests (m < p) lead to a slight improvement over
bagging (m = p). A single classification tree has an error
rate of 45.7%.

40 / 51

Boosting

• Like bagging, boosting is a general approach that can be
applied to many statistical learning methods for regression
or classification. We only discuss boosting for decision
trees.

• Recall that bagging involves creating multiple copies of the
original training data set using the bootstrap, fitting a
separate decision tree to each copy, and then combining all
of the trees in order to create a single predictive model.

• Notably, each tree is built on a bootstrap data set,
independent of the other trees.

• Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information
from previously grown trees.

41 / 51

Boosting algorithm for regression trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B, repeat:

2.1 Fit a tree f̂ b with d splits (d+ 1 terminal nodes) to the
training data (X, r).

2.2 Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x).

2.3 Update the residuals,

ri ← ri − λf̂ b(xi).

3. Output the boosted model,

f̂(x) =

B∑
b=1

λf̂ b(x).

42 / 51

What is the idea behind this procedure?

• Unlike fitting a single large decision tree to the data, which
amounts to fitting the data hard and potentially overfitting,
the boosting approach instead learns slowly.

• Given the current model, we fit a decision tree to the
residuals from the model. We then add this new decision
tree into the fitted function in order to update the
residuals.

• Each of these trees can be rather small, with just a few
terminal nodes, determined by the parameter d in the
algorithm.

• By fitting small trees to the residuals, we slowly improve f̂
in areas where it does not perform well. The shrinkage
parameter λ slows the process down even further, allowing
more and different shaped trees to attack the residuals.

43 / 51

Boosting for classification

• Boosting for classification is similar in spirit to boosting for
regression, but is a bit more complex. We will not go into
detail here, nor do we in the text book.

• Students can learn about the details in Elements of
Statistical Learning, chapter 10.

• The R package gbm (gradient boosted models) handles a
variety of regression and classification problems.

44 / 51

Gene expression data continued

0 1000 2000 3000 4000 5000

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Number of Trees

T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Boosting: depth=1

Boosting: depth=2

RandomForest: m= p

45 / 51

Details of previous figure

• Results from performing boosting and random forests on
the fifteen-class gene expression data set in order to predict
cancer versus normal.

• The test error is displayed as a function of the number of
trees. For the two boosted models, λ = 0.01. Depth-1 trees
slightly outperform depth-2 trees, and both outperform the
random forest, although the standard errors are around
0.02, making none of these differences significant.

• The test error rate for a single tree is 24%.

46 / 51

Tuning parameters for boosting

1. The number of trees B. Unlike bagging and random forests,
boosting can overfit if B is too large, although this
overfitting tends to occur slowly if at all. We use
cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This
controls the rate at which boosting learns. Typical values
are 0.01 or 0.001, and the right choice can depend on the
problem. Very small λ can require using a very large value
of B in order to achieve good performance.

3. The number of splits d in each tree, which controls the
complexity of the boosted ensemble. Often d = 1 works
well, in which case each tree is a stump, consisting of a
single split and resulting in an additive model. More
generally d is the interaction depth, and controls the
interaction order of the boosted model, since d splits can
involve at most d variables.

47 / 51

Tuning parameters for boosting

1. The number of trees B. Unlike bagging and random forests,
boosting can overfit if B is too large, although this
overfitting tends to occur slowly if at all. We use
cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This
controls the rate at which boosting learns. Typical values
are 0.01 or 0.001, and the right choice can depend on the
problem. Very small λ can require using a very large value
of B in order to achieve good performance.

3. The number of splits d in each tree, which controls the
complexity of the boosted ensemble. Often d = 1 works
well, in which case each tree is a stump, consisting of a
single split and resulting in an additive model. More
generally d is the interaction depth, and controls the
interaction order of the boosted model, since d splits can
involve at most d variables.

47 / 51

Tuning parameters for boosting

1. The number of trees B. Unlike bagging and random forests,
boosting can overfit if B is too large, although this
overfitting tends to occur slowly if at all. We use
cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This
controls the rate at which boosting learns. Typical values
are 0.01 or 0.001, and the right choice can depend on the
problem. Very small λ can require using a very large value
of B in order to achieve good performance.

3. The number of splits d in each tree, which controls the
complexity of the boosted ensemble. Often d = 1 works
well, in which case each tree is a stump, consisting of a
single split and resulting in an additive model. More
generally d is the interaction depth, and controls the
interaction order of the boosted model, since d splits can
involve at most d variables.

47 / 51

Another regression example

0 200 400 600 800 1000

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

California Housing Data

Number of Trees

T
es

t A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

RF m=2
RF m=6
GBM depth=4
GBM depth=6

from Elements of Statistical Learning, chapter 15.

48 / 51

Another classification example

0 500 1000 1500 2000 2500

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

Spam Data

Number of Trees

T
es

t E
rr

or
Bagging
Random Forest
Gradient Boosting (5 Node)

from Elements of Statistical Learning, chapter 15.

49 / 51

Variable importance measure
• For bagged/RF regression trees, we record the total

amount that the RSS is decreased due to splits over a given
predictor, averaged over all B trees. A large value indicates
an important predictor.

• Similarly, for bagged/RF classification trees, we add up the
total amount that the Gini index is decreased by splits over
a given predictor, averaged over all B trees.

Thal

Ca

ChestPain

Oldpeak

MaxHR

RestBP

Age

Chol

Slope

Sex

ExAng

RestECG

Fbs

0 20 40 60 80 100

Variable Importance

Variable importance plot
for the Heart data

50 / 51

Summary

• Decision trees are simple and interpretable models for
regression and classification

• However they are often not competitive with other
methods in terms of prediction accuracy

• Bagging, random forests and boosting are good methods
for improving the prediction accuracy of trees. They work
by growing many trees on the training data and then
combining the predictions of the resulting ensemble of trees.

• The latter two methods— random forests and boosting—
are among the state-of-the-art methods for supervised
learning. However their results can be difficult to interpret.

51 / 51

Bayesian Additive Regression Trees

• We discuss Bayesian additive regression trees (BART), an
ensemble method that uses decision trees as its building
blocks.

• Recall that bagging and random forests make predictions
from an average of regression trees, each of which is built
using a random sample of data and/or predictors. Each
tree is built separately from the others.

• By contrast, boosting uses a weighted sum of trees, each of
which is constructed by fitting a tree to the residual of the
current fit. Thus, each new tree attempts to capture signal
that is not yet accounted for by the current set of trees.

1 / 10

Bayesian Additive Regression Trees

• We discuss Bayesian additive regression trees (BART), an
ensemble method that uses decision trees as its building
blocks.

• Recall that bagging and random forests make predictions
from an average of regression trees, each of which is built
using a random sample of data and/or predictors. Each
tree is built separately from the others.

• By contrast, boosting uses a weighted sum of trees, each of
which is constructed by fitting a tree to the residual of the
current fit. Thus, each new tree attempts to capture signal
that is not yet accounted for by the current set of trees.

1 / 10

Bayesian Additive Regression Trees

• We discuss Bayesian additive regression trees (BART), an
ensemble method that uses decision trees as its building
blocks.

• Recall that bagging and random forests make predictions
from an average of regression trees, each of which is built
using a random sample of data and/or predictors. Each
tree is built separately from the others.

• By contrast, boosting uses a weighted sum of trees, each of
which is constructed by fitting a tree to the residual of the
current fit. Thus, each new tree attempts to capture signal
that is not yet accounted for by the current set of trees.

1 / 10

Bayesian Additive Regression Trees

• We discuss Bayesian additive regression trees (BART), an
ensemble method that uses decision trees as its building
blocks.

• Recall that bagging and random forests make predictions
from an average of regression trees, each of which is built
using a random sample of data and/or predictors. Each
tree is built separately from the others.

• By contrast, boosting uses a weighted sum of trees, each of
which is constructed by fitting a tree to the residual of the
current fit. Thus, each new tree attempts to capture signal
that is not yet accounted for by the current set of trees.

1 / 10

Bayesian Additive Regression Trees — Details

• BART is related to both random forests and boosting: each
tree is constructed in a random manner as in bagging and
random forests, and each tree tries to capture signal not
yet accounted for by the current model, as in boosting.

• The main novelty in BART is the way in which new trees
are generated.

• BART can be applied to regression, classification and other
problems; we will focus here just on regression.

2 / 10

Bayesian Additive Regression Trees — Details

• BART is related to both random forests and boosting: each
tree is constructed in a random manner as in bagging and
random forests, and each tree tries to capture signal not
yet accounted for by the current model, as in boosting.

• The main novelty in BART is the way in which new trees
are generated.

• BART can be applied to regression, classification and other
problems; we will focus here just on regression.

2 / 10

Bayesian Additive Regression Trees — Details

• BART is related to both random forests and boosting: each
tree is constructed in a random manner as in bagging and
random forests, and each tree tries to capture signal not
yet accounted for by the current model, as in boosting.

• The main novelty in BART is the way in which new trees
are generated.

• BART can be applied to regression, classification and other
problems; we will focus here just on regression.

2 / 10

Bayesian Additive Regression Trees — Details

• BART is related to both random forests and boosting: each
tree is constructed in a random manner as in bagging and
random forests, and each tree tries to capture signal not
yet accounted for by the current model, as in boosting.

• The main novelty in BART is the way in which new trees
are generated.

• BART can be applied to regression, classification and other
problems; we will focus here just on regression.

2 / 10

BART algorithm — the idea

Trees 1 2 ….. K

Iterations

1

2

B

.

.

x2 ≤ c1 x3 ≤ c2 x1 ≤ c3

3

Perturbations
based on partial residuals

Average these
To get final predictions

Perturbations based
on partial residuals

Average these to
get final predictions

3 / 10

Bayesian Additive Regression Trees — Some Notation

• We let K denote the number of regression trees, and B the
number of iterations for which the BART algorithm will be
run.

• The notation f̂ b
k(x) represents the prediction at x for the

kth regression tree used in the bth iteration. At the end of
each iteration, the K trees from that iteration will be
summed, i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

4 / 10

Bayesian Additive Regression Trees — Some Notation

• We let K denote the number of regression trees, and B the
number of iterations for which the BART algorithm will be
run.

• The notation f̂ b
k(x) represents the prediction at x for the

kth regression tree used in the bth iteration. At the end of
each iteration, the K trees from that iteration will be
summed, i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

4 / 10

Bayesian Additive Regression Trees — Some Notation

• We let K denote the number of regression trees, and B the
number of iterations for which the BART algorithm will be
run.

• The notation f̂ b
k(x) represents the prediction at x for the

kth regression tree used in the bth iteration. At the end of
each iteration, the K trees from that iteration will be
summed, i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

4 / 10

BART iterations

• In the first iteration of the BART algorithm, all trees are
initialized to have a single root node, with
f̂1
k (x) = 1

nK

∑n
i=1 yi, the mean of the response values

divided by the total number of trees. Thus,

f̂1(x) =
K∑
k=1

f̂1
k (x) =

1

n

n∑
i=1

yi

• In subsequent iterations, BART updates each of the K
trees, one at a time. In the bth iteration, to update the kth
tree, we subtract from each response value the predictions
from all but the kth tree, in order to obtain a partial
residual

ri = yi −
∑
k′<k

f̂ b
k′(xi) −

∑
k′>k

f̂ b−1
k′ (xi), i = 1, . . . , n

5 / 10

BART iterations
• In the first iteration of the BART algorithm, all trees are

initialized to have a single root node, with
f̂1
k (x) = 1

nK

∑n
i=1 yi, the mean of the response values

divided by the total number of trees. Thus,

f̂1(x) =

K∑
k=1

f̂1
k (x) =

1

n

n∑
i=1

yi

• In subsequent iterations, BART updates each of the K
trees, one at a time. In the bth iteration, to update the kth
tree, we subtract from each response value the predictions
from all but the kth tree, in order to obtain a partial
residual

ri = yi −
∑
k′<k

f̂ b
k′(xi) −

∑
k′>k

f̂ b−1
k′ (xi), i = 1, . . . , n

5 / 10

BART iterations
• In the first iteration of the BART algorithm, all trees are

initialized to have a single root node, with
f̂1
k (x) = 1

nK

∑n
i=1 yi, the mean of the response values

divided by the total number of trees. Thus,

f̂1(x) =

K∑
k=1

f̂1
k (x) =

1

n

n∑
i=1

yi

• In subsequent iterations, BART updates each of the K
trees, one at a time. In the bth iteration, to update the kth
tree, we subtract from each response value the predictions
from all but the kth tree, in order to obtain a partial
residual

ri = yi −
∑
k′<k

f̂ b
k′(xi) −

∑
k′>k

f̂ b−1
k′ (xi), i = 1, . . . , n

5 / 10

New trees are chosen by perturbations

• Rather than fitting a fresh tree to this partial residual,
BART randomly chooses a perturbation to the tree from
the previous iteration (f̂ b−1

k) from a set of possible
perturbations, favoring ones that improve the fit to the
partial residual.

• There are two components to this perturbation:

1. We may change the structure of the tree by adding or
pruning branches.

2. We may change the prediction in each terminal node of the
tree.

6 / 10

Examples of possible perturbations to a tree

(a): f̂ b−1
k (X) (b): Possibility #1 for f̂ b

k(X)

|X < 169.17

X < 114.305

X < 140.35
−0.5031

 0.2667 −0.2470

 0.4079

|X < 169.17

X < 114.305

X < 140.35
−0.5110

 0.2693 −0.2649

 0.4221

(c): Possibility #2 for f̂ b
k(X) (d): Possibility #3 for f̂ b

k(X)

|X < 169.17

−0.1218 0.4079

|X < 169.17

X < 114.305

X < 106.755 X < 140.35

−0.05089 −1.03100
 0.26670 −0.24700

 0.40790

7 / 10

What does BART Deliver?

• The output of BART is a collection of prediction models,

f̂ b(x) =
K∑
k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

• To obtain a single prediction, we simply take the average
after some L burn-in iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x).

• The perturbation-style moves guard against overfitting
since they limit how hard we fit the data in each iteration.

• We can also compute quantities other than the average: for
instance, the percentiles of fL+1(x), · · · fB(x) provide a
measure of uncertainty of the final prediction.

8 / 10

What does BART Deliver?

• The output of BART is a collection of prediction models,

f̂ b(x) =

K∑
k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

• To obtain a single prediction, we simply take the average
after some L burn-in iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x).

• The perturbation-style moves guard against overfitting
since they limit how hard we fit the data in each iteration.

• We can also compute quantities other than the average: for
instance, the percentiles of fL+1(x), · · · fB(x) provide a
measure of uncertainty of the final prediction.

8 / 10

What does BART Deliver?

• The output of BART is a collection of prediction models,

f̂ b(x) =

K∑
k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

• To obtain a single prediction, we simply take the average
after some L burn-in iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x).

• The perturbation-style moves guard against overfitting
since they limit how hard we fit the data in each iteration.

• We can also compute quantities other than the average: for
instance, the percentiles of fL+1(x), · · · fB(x) provide a
measure of uncertainty of the final prediction.

8 / 10

What does BART Deliver?

• The output of BART is a collection of prediction models,

f̂ b(x) =

K∑
k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

• To obtain a single prediction, we simply take the average
after some L burn-in iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x).

• The perturbation-style moves guard against overfitting
since they limit how hard we fit the data in each iteration.

• We can also compute quantities other than the average: for
instance, the percentiles of fL+1(x), · · · fB(x) provide a
measure of uncertainty of the final prediction.

8 / 10

What does BART Deliver?

• The output of BART is a collection of prediction models,

f̂ b(x) =

K∑
k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

• To obtain a single prediction, we simply take the average
after some L burn-in iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x).

• The perturbation-style moves guard against overfitting
since they limit how hard we fit the data in each iteration.

• We can also compute quantities other than the average: for
instance, the percentiles of fL+1(x), · · · fB(x) provide a
measure of uncertainty of the final prediction.

8 / 10

BART applied to the Heart data
K = 200 trees; the number of iterations is increased to 10, 000.
During the initial iterations (in gray), the test and training errors
jump around a bit. After this initial burn-in period, the error rates
settle down.
The tree perturbation process largely avoids overfitting.

5 10 50 100 500 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Iterations

E
rr

or

BART Training Error
BART Test Error
Boosting Training Error
Boosting Test Error

9 / 10

BART is a Bayesian Method

• It turns out that the BART method can be viewed as a
Bayesian approach to fitting an ensemble of trees: each
time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a
posterior distribution.

• Furthermore, the BART algorithm can be viewed as a
Markov chain Monte Carlo procedure for fitting the BART
model.

• We typically choose large values for B and K, and a
moderate value for L: for instance, K = 200, B = 1,000,
and L = 100 are reasonable choices. BART has been shown
to have impressive out-of-box performance — that is, it
performs well with minimal tuning.

10 / 10

BART is a Bayesian Method

• It turns out that the BART method can be viewed as a
Bayesian approach to fitting an ensemble of trees: each
time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a
posterior distribution.

• Furthermore, the BART algorithm can be viewed as a
Markov chain Monte Carlo procedure for fitting the BART
model.

• We typically choose large values for B and K, and a
moderate value for L: for instance, K = 200, B = 1,000,
and L = 100 are reasonable choices. BART has been shown
to have impressive out-of-box performance — that is, it
performs well with minimal tuning.

10 / 10

BART is a Bayesian Method

• It turns out that the BART method can be viewed as a
Bayesian approach to fitting an ensemble of trees: each
time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a
posterior distribution.

• Furthermore, the BART algorithm can be viewed as a
Markov chain Monte Carlo procedure for fitting the BART
model.

• We typically choose large values for B and K, and a
moderate value for L: for instance, K = 200, B = 1,000,
and L = 100 are reasonable choices. BART has been shown
to have impressive out-of-box performance — that is, it
performs well with minimal tuning.

10 / 10

