Classification

e Qualitative variables take values in an unordered set C,
such as:
eye colore {brown,blue,green}
email€ {spam, ham}.

e Given a feature vector X and a qualitative response Y
taking values in the set C, the classification task is to build
a function C'(X) that takes as input the feature vector X
and predicts its value for Y; ie. C'(X) € C.

e Often we are more interested in estimating the probabilities
that X belongs to each category in C.
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Generative Models and Naive Bayes

Linear and quadratic discriminant analysis derive from
generative models, where fi(x) are Gaussian.

Often useful if some classes are well separated — a
situation where logistic regression is unstable.

Naive Bayes assumes that the densities fi(z) in each class
factor:

Je(x) = fri(x1) X fra(@2) X -+ X frp(zp)

Equivalently this assumes that the features are independent
within each class.

Then using Bayes formula:

Pr(Y _ ]4?|X _ [13) _ T X szl(l'l) X f]g2($2) X oo X fkp(ggp)
Zl[il m X frn(x1) X fia(we) X -+ X fip(xp)
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Recap
Linear versus Logistic Regression
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The orange marks indicate the response Y, either 0 or 1. Linear
regression does not estimate Pr(Y = 1|X) well. Logistic
regression seems well suited to the task.
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Recap
Logistic regression with several variables

X
log (%) =Bo+ B X1+ + BpXp

650+,31X1+"'+/3pxp

p(X) = 1 + efotPrXat+BpXp
Coefficient Std. Error Z-statistic = P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] -0.6468 0.2362 -2.74 0.0062

Why is coefficient for student negative, while it was positive
before?
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Recap
Generalized Linear Models

Linear regression is used for quantitative responses.

Linear logistic regression is the counterpart for a binary
response, and models the logit of the probability as a linear
model.

Other response types exist, such as non-negative responses,
skewed distributions, and more.

Generalized linear models provide a unified framework for
dealing with many different response types.
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Linear regression with response bikers: number of hourly users
in bikeshare program in Washington, DC.

Example: Bikeshare Data

Recap

Coefficient Std. error z-statistic p-value

Intercept 73.60 5.13 14.34 0.00
workingday 1.27 1.78 0.71 0.48
temp 157.21 10.26 15.32 0.00
weathersit [cloudy/misty] -12.89 1.96 -6.56  0.00
weathersit[light rain/snow] -66.49 2.97 -22.43  0.00
weathersit [heavy rain/snow] -109.75 76.67 -143  0.15

Coefficient

-20

—40

Coefficient
0
|

-100
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Number of Bikers

100 200 300 400 500 600

0

Recap

Mean /Variance Relationship

Log(Number of Bikers)

Hour Hour
In left plot we see that the variance mostly increases with
the mean.
10% of linear model predictions are negative! (not shown
here.)
Taking log(bikers) alleviates this, but has its own
problems: e.g. predictions are on the wrong scale, and
some counts are zero! 10/13
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Poisson Regression Model

Poisson distribution is useful for modeling counts:

for k=0,1,2,...

A=E(Y) = Var(Y) — i.e. there is a mean/variance
dependence.
With covariates, we model

log(A(X1, ..., Xp)) = o + S1X1+ - + B X,

or equivalently

)\(Xl, “en ,Xp) e 6B0+51X1+...+IBPXP.

Model automatically guarantees that the predictions are
non-negative.
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Poisson Regression on Bikeshare Data

Recap

Coefficient Std. error z-statistic p-value
Intercept 4.12 0.01 683.96 0.00
workingday 0.01 0.00 7.5 0.00
temp 0.79 0.01 68.43 0.00
weathersit [cloudy/misty] -0.08 0.00 -34.53  0.00
weathersit[light rain/snow] -0.58 0.00 -141.91  0.00
weathersit [heavy rain/snow] -0.93 0.17 -5.55  0.00
g - - -
g n o o
8 s '
<
cl) I o
v
g
T T T T T T T T T T T T T T T
J FMAMUJJ ASOND 5 10 15 20

Hour
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Recap
Generalized Linear Models

® We have covered three GLMs in this course: Gaussian,
binomial and Poisson.

® They each have a characteristic link function. This is the
transformation of the mean that is represented by a linear
model:

n(E(Y|X15 Xo,... ,Xp)) =B+ /X1 +- -+ ,Bpo-

The link functions for linear, logistic and Poisson regression

are n(p) = p, n(p) =log(p/(1 — p)), and n(p) = log(p),
respectively.

® They also each have characteristic variance functions.

® The models are fit by maximum-likelihood, and model
summaries are produced by glm() in R.

® Other GLMS include Gamma, Negative-binomial, Inverse
Gaussian and more.
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Summary of today’s lecture

Generative Models and Naive Bayes

¢ Logistic regression models Pr(Y = k| X = z) directly, via
the logistic function. Similarly the multinomial logistic
regression uses the softmax function. These all model the
conditional distribution of Y given X.

® By contrast generative models start with the conditional
distribution of X given Y, and then use Bayes formula to
turn things around:

T fr ()

PrY =kl X =2)= ———————.
( | ) S mfi(z)

® fi(x) is the density of X given Y = k;
® 71, = Pr(Y = k) is the marginal probability that Y is in
class k.

3/13
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Summary of today’s lecture
Generative Models and Naive Bayes
Linear and quadratic discriminant analysis derive from
generative models, where fi(x) are Gaussian.
Often useful if some classes are well separated — a
situation where logistic regression is unstable.

Naive Bayes assumes that the densities fi(z) in each class
factor:

Je(x) = fri(x1) X fra(@2) X -+ X frp(zp)

Equivalently this assumes that the features are independent
within each class.

Then using Bayes formula:
T X fr1(21) X fra(xa) X - X fip(zp)
S m X fu(@n) x fo(wa) x o % fip(ap)

4/13
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Discriminant Analysis

Here the approach is to model the distribution of X in each of
the classes separately, and then use Bayes theorem to flip things
around and obtain Pr(Y|X).

When we use normal (Gaussian) distributions for each class,
this leads to linear or quadratic discriminant analysis.

However, this approach is quite general, and other distributions
can be used as well. We will focus on normal distributions.
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Bayes theorem for classification
Thomas Bayes was a famous mathematician whose name
represents a big subfield of statistical and probabilistic
modeling. Here we focus on a simple result, known as Bayes
theorem:
Pr(X =z|Y =k)-Pr(Y = k)
Pr(X =x)

Pr(Y = k|X =z) =
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Bayes theorem for classification
Thomas Bayes was a famous mathematician whose name
represents a big subfield of statistical and probabilistic
modeling. Here we focus on a simple result, known as Bayes
theorem:
Pr(X =z|Y =k)-Pr(Y =k)
Pr(X =x)

Pr(Y = k|X =z) =

One writes this slightly differently for discriminant analysis:

Pr(Y =kl X =2) = M, where

B Z{il Wlfl(x)

o fr(z) =Pr(X =z|Y = k) is the density for X in class k.
Here we will use normal densities for these, separately in
each class.

e 1, = Pr(Y = k) is the marginal or prior probability for
class k.
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Classify to the highest density

4 -2 0 2 4 4 -2 0 2 4

We classify a new point according to which density is highest.
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Classify to the highest density

4 -2 0 2 4 4 -2 0 2 4

We classify a new point according to which density is highest.

When the priors are different, we take them into account as
well, and compare 7y, fi(z). On the right, we favor the pink
class — the decision boundary has shifted to the left.



Why discriminant analysis?

e When the classes are well-separated, the parameter
estimates for the logistic regression model are surprisingly
unstable. Linear discriminant analysis does not suffer from
this problem.

e If n is small and the distribution of the predictors X is
approximately normal in each of the classes, the linear
discriminant model is again more stable than the logistic
regression model.

e Linear discriminant analysis is popular when we have more

than two response classes, because it also provides
low-dimensional views of the data.



Linear Discriminant Analysis when p =1

The Gaussian density has the form

fk(x) = \/%Uk 67%<%>

Here pu is the mean, and o} the variance (in class k). We will
assume that all the o, = o are the same.
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Linear Discriminant Analysis when p =1

The Gaussian density has the form

o= g AR

Here pu is the mean, and o} the variance (in class k). We will
assume that all the o, = o are the same.

Plugging this into Bayes formula, we get a rather complex
expression for pi(z) = Pr(Y = k| X = z):

)
- 2
Zl LT 271_06_%( U#z)

pr(z) =

Happily, there are simplifications and cancellations.



Discriminant functions

To classify at the value X = z, we need to see which of the
pr(x) is largest. Taking logs, and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to the
class with the largest discriminant score:

2
N M Hy
ok(x) = - 2 292 + log(7k)

Note that dx(x) is a linear function of z.
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Discriminant functions

To classify at the value X = z, we need to see which of the
pr(x) is largest. Taking logs, and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to the
class with the largest discriminant score:

2
_ HE Hi
Op(z) =a - —5 — o 5 +log(m)
Note that dx(x) is a linear function of z.

If there are K = 2 classes and 7w = w9 = 0.5, then one can see
that the decision boundary is at

p1 + o

5

(See if you can show this)

V]



=1.

= 1.5, 1 =m = 0.5, and 0% =

—1.5, po

Example with p
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=1.

2 _

1.5, mp =m =0.5, and ¢

y U2
Typically we don’t know these parameters; we just have the

—-1.5

Example with p

training data. In that case we simply estimate the parameters

and plug them into the rule.
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Estimating the parameters

N ng
Ty = —
n
N 1
He = . T
o iry;=k
K
1
5? = > D (i )
6° = x; —
n— K ' ( 7 /’[/k)
k=11i:y;=k
K
> g
= o)
n—-K "
k=1
21 A2
where 63 = >, —x (@i — fu)” is the usual formula for the

estimated variance in the kth class.
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Linear Discriminant Analysis when p > 1

: 1 )T (e
Den31ty; f(gj):We s@—pw) ' B (z—p)
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Linear Discriminant Analysis when p > 1

: 1 )T (e
Den31ty; f(gj):We s@—pw) ' B (z—p)

1
Discriminant function: dx(x) = 2Ty, — iuffl_luk + log 7,
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Linear Discriminant Analysis when p > 1

: 1 )T (e
Den31ty; f(gj):We s@—pw) ' B (z—p)

1
Discriminant function: dx(x) = 2Ty, — §u£2_luk + log 7,

Despite its complex form,
0k () = ko + 11 + cpaxa + ... + crprp — a linear function.
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[lustration: p = 2 and K = 3 classes

X

” 2 0 2 4 -4 2 0 2 4
X1 X1

Here m; = my = m3 = 1/3.

The dashed lines are known as the Bayes decision boundaries.
Were they known, they would yield the fewest misclassification
errors, among all possible classifiers.
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From 05 (z) to probabilities

Once we have estimates 0 (), we can turn these into estimates

for class probabilities:

— esk(m)
Pr(Y =kl X =2) = ——F.
leil eél(x)

So classifying to the largest Sk(af) amounts to classifying to the
class for which Pr(Y = k| X = z) is largest.



From 05 (z) to probabilities

Once we have estimates 0 (), we can turn these into estimates

for class probabilities:

— esk(m)
Pr(Y =kl X =2) = ——F.
leil eél(x)

So classifying to the largest Sk(af) amounts to classifying to the
class for which Pr(Y = k| X = z) is largest.

When K = 2, we classify to class 2 if 13\1"(Y =2|X =x) > 0.5,
else to class 1.
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LDA on Credit Data

True Default Status

No Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252) /10000 errors — a 2.75% misclassification rate!

Some caveats:

e This is training error, and we may be overfitting.
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LDA on Credit Data
True Default Status

No Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252) /10000 errors — a 2.75% misclassification rate!

Some caveats:

e This is training error, and we may be overfitting. Not a big
concern here since n = 10000 and p = 2!

o If we classified to the prior — always to class No in this
case — we would make 333/10000 errors, or only 3.33%.

e Of the true No’s, we make 23/9667 = 0.2% errors; of the
true Yes’s, we make 252/333 = 75.7% errors!



Types of errors

False positive rate: The fraction of negative examples that are
classified as positive — 0.2% in example.

False negative rate: The fraction of positive examples that are
classified as negative — 75.7% in example.

We produced this table by classifying to class Yes if

f’\r(Default = Yes|Balance, Student) > 0.5

We can change the two error rates by changing the threshold
from 0.5 to some other value in [0, 1]:

—

Pr(Default = Yes|Balance, Student) > threshold,

and vary threshold.
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Varying the threshold

= Overall Error
—— False Positive
—— False Negative

Error Rate
0.4
|

0.2

0.0
|

T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

Threshold

In order to reduce the false negative rate, we may want to
reduce the threshold to 0.1 or less.
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ROC Curve
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The ROC plot displays both simultaneously.



ROC Curve
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The ROC plot displays both simultaneously.

Sometimes we use the AUC or area under the curve to
summarize the overall performance. Higher AUC'is good.



Other forms of Discriminant Analysis

_ mJr(x)
S mfix)

When f(z) are Gaussian densities, with the same covariance

Pr(Y =k|X =)

matrix 3 in each class, this leads to linear discriminant analysis.

By altering the forms for fi(x), we get different classifiers.

e With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.
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Other forms of Discriminant Analysis

__ mfr()
T NK
211 T i)
When f(z) are Gaussian densities, with the same covariance

matrix 3 in each class, this leads to linear discriminant analysis.
By altering the forms for fi(x), we get different classifiers.

Pr(Y =k|X =)

e With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.

e With fi(x) = 1;:1 fjk(x;) (conditional independence
model) in each class we get naive Bayes. For Gaussian this
means the 3 are diagonal.
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Other forms of Discriminant Analysis

Pr(Y — kX — o) — _"hdk@)
v )Z{immx)

When f(z) are Gaussian densities, with the same covariance

matrix 3 in each class, this leads to linear discriminant analysis.

By altering the forms for fi(x), we get different classifiers.
e With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.
e With fi(x) = 1;:1 fjk(x;) (conditional independence
model) in each class we get naive Bayes. For Gaussian this
means the 3 are diagonal.

e Many other forms, by proposing specific density models for
fx(z), including nonparametric approaches.
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Quadratic Discriminant Analysis
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1 _ 1
ok(z) = —5(:1: — ,uk)TEk l(x — pg) + log mg, — B log | Xk|

Because the Xj are different, the quadratic terms matter.
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Generative Models and Naive Bayes

¢ Logistic regression models Pr(Y = k| X = z) directly, via
the logistic function. Similarly the multinomial logistic
regression uses the softmax function. These all model the
conditional distribution of Y given X.

® By contrast generative models start with the conditional
distribution of X given Y, and then use Bayes formula to
turn things around:

T fr ()

PrY =kl X =2)= ———————.
( | ) S mfi(z)

® fi(x) is the density of X given Y = k;
® 71, = Pr(Y = k) is the marginal probability that Y is in
class k.
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Generative Models and Naive Bayes

Linear and quadratic discriminant analysis derive from
generative models, where fi(x) are Gaussian.

Often useful if some classes are well separated — a
situation where logistic regression is unstable.

Naive Bayes assumes that the densities fi(z) in each class
factor:

Je(x) = fri(x1) X fra(@2) X -+ X frp(zp)

Equivalently this assumes that the features are independent
within each class.

Then using Bayes formula:

Pr(Y _ ]4?|X _ [13) _ T X szl(l'l) X f]g2($2) X oo X fkp(ggp)
Zl[il m X frn(x1) X fia(we) X -+ X fip(xp)

4/13




Naive Bayes — Details
Why the independence assumption?

e Difficult to specify and model high-dimensional densities.
Much easier to specify one-dimensional densities.

e Can handle mized features:

e [f feature j is quantitative, can model as univariate
Gaussian, for example: X;|Y =k ~ N(u;x,03,). We
estimate j; and 0%, from the data, and then plug into
Gaussian density formula for f;x(z;).

® Alternatively, can use a histogram estimate of the density,
and directly estimate fji(z;) by the proportion of
observations in the bin into which z; falls.

® [If feature j is qualitative, can simply model the proportion
in each category. Example to follow.

® Somewhat unrealistic but extremely useful in many cases.
Despite its simplicity, often shows good classification
performance due to reduced variance.
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Naive Bayes — Toy Example

Density estimates for class k=1

fll 12 flS (.
I I 7A1'1=7i'2=0.5
i L i i I f11(0.4) = 0.368

fra(15) = 0.484
f13(1) = 0.226

f21(0.4) = 0.030
faa(1.5) 0.130
fa3(1) = 0.616

Pr(Y: 1|X: )—0944 and Pr(Y —2|X—93 ) = 0.056

Density estimates for class k=2
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Naive Bayes and GAMs

Pr(Y =k|X =2)\ _ | ( mfilz)

o8 (Pr(Y:lezw)> N 1g<7rKfK($)>
b WkH?:l fkj(xj)
- 1g<7rKH§—1ij(mj)>

= (22 + o (125
= ak+z;9kj<xj)7

where a; = log (7”“ ) and gi;(x;) = log <%>
Hence, the Naive Bayes model takes the form of a generalized
additive model from Chapter 7.
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Naive Bayes

Assumes features are independent in each class.
Useful when p is large, and so multivariate methods like QDA
and even LDA break down.

e Gaussian naive Bayes assumes each X is diagonal:

P
Sr(z) oc log |y [T frilxs)

Jj=1

1 | (w5 — pay)? 5
= _52 ————— tlogoy,| +logm
j=1 Tkj

e can use for mizred feature vectors (qualitative and
quantitative). If X is qualitative, replace fi;(x;) with
probability mass function (histogram) over discrete
categories.

Despite strong assumptions, naive Bayes often produces good
classification results.
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log <1§1](7T()x)> = log (g;g;) — o+ T+ ..+ oy

So it has the same form as logistic regression.

The difference is in how the parameters are estimated.
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The difference is in how the parameters are estimated.

e Logistic regression uses the conditional likelihood based on
Pr(Y|X) (known as discriminative learning).
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log <1€11()T()x)> = log <§;Ez;) — o+ T+ ..+ oy

So it has the same form as logistic regression.

The difference is in how the parameters are estimated.

e Logistic regression uses the conditional likelihood based on
Pr(Y|X) (known as discriminative learning).

e LDA uses the full likelihood based on Pr(X,Y’) (known as
generative learning).

e Despite these differences, in practice the results are often
very similar.

Footnote: logistic regression can also fit quadratic boundaries
like QDA, by explicitly including quadratic terms in the model.
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Summary

Logistic regression is very popular for classification,
especially when K = 2.

LDA is useful when n is small, or the classes are well
separated, and Gaussian assumptions are reasonable. Also
when K > 2.

Naive Bayes is useful when p is very large.

See Section 4.5 for some comparisons of logistic regression,
LDA and KNN.
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