Classification

e Qualitative variables take values in an unordered set C,
such as:
eye colore {brown,blue,green}
email€ {spam, ham}.

e Given a feature vector X and a qualitative response Y
taking values in the set C, the classification task is to build
a function C'(X) that takes as input the feature vector X
and predicts its value for Y; ie. C'(X) € C.

e Often we are more interested in estimating the probabilities
that X belongs to each category in C.
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Classification

e Qualitative variables take values in an unordered set C,
such as:

eye colore {brown,blue,green}

email€ {spam, ham}.

Given a feature vector X and a qualitative response Y
taking values in the set C, the classification task is to build
a function C'(X) that takes as input the feature vector X
and predicts its value for Y; ie. C'(X) € C.

Often we are more interested in estimating the probabilities
that X belongs to each category in C.
For example, it is more valuable to have an estimate of the

probability that an insurance claim is fraudulent, than a
classification fraudulent or not.



Credit Card Default

Example
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Can we use Linear Regression?
Suppose for the Default classification task that we code

v — 0 if No
1 if Yes.

Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57
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Can we use Linear Regression?
Suppose for the Default classification task that we code

v — 0 if No
1 if Yes.

Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57

e In this case of a binary outcome, linear regression does a
good job as a classifier, and is equivalent to linear
discriminant analysis which we discuss later.

e Since in the population E(Y|X = z) = Pr(Y = 1| X = x),
we might think that regression is perfect for this task.
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Can we use Linear Regression?
Suppose for the Default classification task that we code

0 ifN
v - if No
1 if Yes.
Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57

e In this case of a binary outcome, linear regression does a
good job as a classifier, and is equivalent to linear
discriminant analysis which we discuss later.

e Since in the population E(Y|X = z) = Pr(Y = 1| X = x),
we might think that regression is perfect for this task.

e However, linear regression might produce probabilities less
than zero or bigger than one. Logistic regression is more
appropriate.
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Linear versus Logistic Regression
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The orange marks indicate the response Y, either 0 or 1. Linear
regression does not estimate Pr(Y = 1|X) well. Logistic
regression seems well suited to the task.



Linear Regression continued

Now suppose we have a response variable with three possible
values. A patient presents at the emergency room, and we must
classify them according to their symptoms.

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

This coding suggests an ordering, and in fact implies that the
difference between stroke and drug overdose is the same as
between drug overdose and epileptic seizure.
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Now suppose we have a response variable with three possible
values. A patient presents at the emergency room, and we must
classify them according to their symptoms.

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

This coding suggests an ordering, and in fact implies that the
difference between stroke and drug overdose is the same as
between drug overdose and epileptic seizure.

Linear regression is not appropriate here.
Multiclass Logistic Regression or Discriminant Analysis are
more appropriate.
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Logistic Regression

Let’s write p(X) = Pr(Y = 1|X) for short and consider using
balance to predict default. Logistic regression uses the form

ePotB1X
p(X) = 1+ efot/ X’

(e ~ 2.71828 is a mathematical constant [Euler’s number.])
It is easy to see that no matter what values 5y, 81 or X take,
p(X) will have values between 0 and 1.
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Logistic Regression
Let’s write p(X) = Pr(Y = 1|X) for short and consider using
balance to predict default. Logistic regression uses the form
ePotB1X

p(X) = 1+ efot/ X’

(e ~ 2.71828 is a mathematical constant [Euler’s number.])
It is easy to see that no matter what values 5y, 81 or X take,

p(X) will have values between 0 and 1.

A bit of rearrangement gives

g ({200 ) = fo + i

This monotone transformation is called the log odds or logit
transformation of p(X). (by log we mean natural log: In.)



Linear versus Logistic Regression
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Maximum Likelihood

We use maximum likelihood to estimate the parameters.
50; H P -fz H p(xl))
iy, =1 1:y;=0

This likelihood gives the probability of the observed zeros and
ones in the data. We pick By and 1 to maximize the likelihood
of the observed data.
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Maximum Likelihood

We use maximum likelihood to estimate the parameters.
50; H P xz H p(xl))
iy, =1 1:y;=0

This likelihood gives the probability of the observed zeros and
ones in the data. We pick By and 1 to maximize the likelihood
of the observed data.

Most statistical packages can fit linear logistic regression models
by maximum likelihood. In R we use the glm function.

Coefficient Std. Error Z-statistic P-value
Intercept -10.6513 0.3612 -29.5 < 0.0001
balance 0.0055 0.0002 24.9 < 0.0001

8
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Making Predictions

What is our estimated probability of default for someone with
a balance of $10007?

eBo+BrX ¢—10.6513-0.0055x 1000

p(X) = 0.006

1 1 eBothix T 1+ ¢—10.6513+0.0055x 1000
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Making Predictions

What is our estimated probability of default for someone with
a balance of $10007?

eBo+BrX o—10.6513+0.0055x 1000
p(X) = 1+ chotBiX 1+ e L065I3+0.0055x1000 — 0.006
With a balance of $20007?
eBot+BLX o—10.6513+0.0055 %2000
p(X) = 0.586

) 1 eBothix ~ 1+ ¢—10.6513+0.0055x 2000
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Lets do it again, using student as the predictor.

Coefficient Std. Error Z-statistic P-value
Intercept -3.5041 0.0707 -49.55 < 0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004
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Lets do it again, using student as the predictor.

Coefficient Std. Error Z-statistic P-value
Intercept -3.5041 0.0707 -49.55 < 0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

P e—3.5041+0.4049><1
Pr(default=Yes|student=Yes) = 1+ o 350110000051 = 0.0431,
3. .

- o —3:504140.4049 %0
Pr(default=Yes|student=No) = 1 ¢ 350110004950 — 0.0292.
3. .
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Linear Regression continued

Now suppose we have a response variable with three possible
values. A patient presents at the emergency room, and we must
classify them according to their symptoms.

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

This coding suggests an ordering, and in fact implies that the
difference between stroke and drug overdose is the same as
between drug overdose and epileptic seizure.

Linear regression is not appropriate here.
Multiclass Logistic Regression or Discriminant Analysis are
more appropriate.
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Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.
It is easily generalized to more than two classes. One version
(used in the R package glmnet) has the symmetric form

ePok+B1k X1+ +Bpe Xp

PI‘(Y == k|X) = Zle 6180£+515X1+-..+5;MXP

Here there is a linear function for each class.
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Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.

It is easily generalized to more than two classes. One version

(used in the R package glmnet) has the symmetric form
ePok+B1k X1+ +Bpe Xp

Zf_l eBoetBreXi+...+Bpe Xp

Pr(Y = k|X) =

Here there is a linear function for each class.

(The mathier students will recognize that some cancellation is
possible, and only K — 1 linear functions are needed as in
2-class logistic regression.)
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Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.
It is easily generalized to more than two classes. One version
(used in the R package glmnet) has the symmetric form

ePok+B1k X1+ +Bpe Xp

PI‘(Y == k|X) = Zle 6180£+515X1+-..+5;MXP

Here there is a linear function for each class.

(The mathier students will recognize that some cancellation is
possible, and only K — 1 linear functions are needed as in
2-class logistic regression.)

Multiclass logistic regression is also referred to as multinomial
Tegression.
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Generalized Linear Models

Linear regression is used for quantitative responses.

Linear logistic regression is the counterpart for a binary
response, and models the logit of the probability as a linear
model.

Other response types exist, such as non-negative responses,
skewed distributions, and more.

Generalized linear models provide a unified framework for
dealing with many different response types.

8/13



Linear regression with response bikers: number of hourly users
in bikeshare program in Washington, DC.

Example: Bikeshare Data

Coefficient Std. error z-statistic p-value

Intercept 73.60 5.13 14.34 0.00
workingday 1.27 1.78 0.71 0.48
temp 157.21 10.26 15.32 0.00
weathersit [cloudy/misty] -12.89 1.96 -6.56  0.00
weathersit[light rain/snow] -66.49 2.97 -22.43  0.00
weathersit [heavy rain/snow] -109.75 76.67 -143  0.15

Coefficient

-20

—40

Coefficient
0
|

-100
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Mean /Variance Relationship
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® In left plot we see that the variance mostly increases with

the mean.
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Number of Bikers

100 200 300 400 500 600

0

Mean /Variance Relationship

Log(Number of Bikers)

Hour Hour
In left plot we see that the variance mostly increases with
the mean.
10% of linear model predictions are negative! (not shown
here.)
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Number of Bikers

100 200 300 400 500 600

0

Mean /Variance Relationship

Log(Number of Bikers)

Hour Hour
In left plot we see that the variance mostly increases with
the mean.
10% of linear model predictions are negative! (not shown
here.)
Taking log(bikers) alleviates this, but has its own
problems: e.g. predictions are on the wrong scale, and
some counts are zero!
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Poisson Regression Model
® Poisson distribution is useful for modeling counts:
—)\)\k
k!

e A=E(Y) = Var(Y) — i.e. there is a mean/variance
dependence.

e

Pr(Y =k) = for k=0,1,2,...
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Poisson Regression Model
® Poisson distribution is useful for modeling counts:
—)\)\k
k!

e A=E(Y) = Var(Y) — i.e. there is a mean/variance
dependence.

e

Pr(Y =k) = for k=0,1,2,...

® With covariates, we model
log(A(X1,..,Xp)) =Bo+ 51Xy + -+ BpXp

or equivalently

)\(Xl, “en ,Xp) e 6B0+51X1+...+IBPXP.
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Poisson Regression Model

Poisson distribution is useful for modeling counts:

for k=0,1,2,...

A=E(Y) = Var(Y) — i.e. there is a mean/variance
dependence.
With covariates, we model

log(A(X1, ..., Xp)) = o + S1X1+ - + B X,

or equivalently

)\(Xl, “en ,Xp) e 6B0+51X1+...+IBPXP.

Model automatically guarantees that the predictions are
non-negative.
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Poisson Regression on Bikeshare Data

Coefficient Std. error z-statistic p-value
Intercept 4.12 0.01 683.96 0.00
workingday 0.01 0.00 7.5 0.00
temp 0.79 0.01 68.43 0.00
weathersit [cloudy/misty] -0.08 0.00 -34.53  0.00
weathersit[light rain/snow] -0.58 0.00 -141.91  0.00
weathersit [heavy rain/snow] -0.93 0.17 -5.55  0.00
g - - -
g n o o
8 s '
<
cl) I o
v
g
T T T T T T T T T T T T T T T
J FMAMUJJ ASOND 5 10 15 20

Hour
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Poisson Regression on Bikeshare Data

Coefficient Std. error z-statistic p-value

Intercept 4.12 0.01 683.96  0.00
workingday 0.01 0.00 7.5 0.00
temp 0.79 0.01 68.43  0.00
weathersit [cloudy/misty] -0.08 0.00 -34.53  0.00
weathersit[light rain/snow] -0.58 0.00 -141.91  0.00
weathersit [heavy rain/snow] -0.93 0.17 -5.55  0.00
g - - -
g 7 o
S 8 ']
<
cl) b o
v |
E
T T T T T T T T T T T T T T T T
J FMAMUJJ ASOND 5 10 15 20
Month Hour

*In this case the variance is somewhat larger than the mean — a situation known
as overdispersion — so the p-values are misleadingly small.
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Generalized Linear Models

® We have covered three GLMs in this course: Gaussian,
binomial and Poisson.

® They each have a characteristic link function. This is the
transformation of the mean that is represented by a linear
model:

n(E(Y|X15 Xo,... ,Xp)) =B+ /X1 +- -+ ,Bpo-

The link functions for linear, logistic and Poisson regression

are n(p) = p, n(p) =log(p/(1 — p)), and n(p) = log(p),
respectively.

® They also each have characteristic variance functions.

® The models are fit by maximum-likelihood, and model
summaries are produced by glm() in R.

® Other GLMS include Gamma, Negative-binomial, Inverse
Gaussian and more.

13/ 13



