
Unsupervised Learning

Unsupervised vs Supervised Learning:

• Most of this course focuses on supervised learning methods
such as regression and classification.

• In that setting we observe both a set of features
X1, X2, . . . , Xp for each object, as well as a response or
outcome variable Y . The goal is then to predict Y using
X1, X2, . . . , Xp.

• Here we instead focus on unsupervised learning, we where
observe only the features X1, X2, . . . , Xp. We are not
interested in prediction, because we do not have an
associated response variable Y .
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The Goals of Unsupervised Learning

• The goal is to discover interesting things about the
measurements: is there an informative way to visualize the
data? Can we discover subgroups among the variables or
among the observations?

• We discuss two methods:
• principal components analysis, a tool used for data

visualization or data pre-processing before supervised
techniques are applied, and

• clustering, a broad class of methods for discovering
unknown subgroups in data.

2 / 50



The Challenge of Unsupervised Learning

• Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

• But techniques for unsupervised learning are of growing
importance in a number of fields:
• subgroups of breast cancer patients grouped by their gene

expression measurements,
• groups of shoppers characterized by their browsing and

purchase histories,
• movies grouped by the ratings assigned by movie viewers.

3 / 50



Another advantage

• It is often easier to obtain unlabeled data — from a lab
instrument or a computer — than labeled data, which can
require human intervention.

• For example it is difficult to automatically assess the
overall sentiment of a movie review: is it favorable or not?
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Principal Components Analysis

• PCA produces a low-dimensional representation of a
dataset. It finds a sequence of linear combinations of the
variables that have maximal variance, and are mutually
uncorrelated.

• Apart from producing derived variables for use in
supervised learning problems, PCA also serves as a tool for
data visualization.
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Principal Components Analysis: details

• The first principal component of a set of features
X1, X2, . . . , Xp is the normalized linear combination of the
features

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp

that has the largest variance. By normalized, we mean that∑p
j=1 φ

2
j1 = 1.

• We refer to the elements φ11, . . . , φp1 as the loadings of the
first principal component; together, the loadings make up
the principal component loading vector,
φ1 = (φ11 φ21 . . . φp1)

T .

• We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an
arbitrarily large variance.
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PCA: example
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The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates
the first principal component direction, and the blue dashed
line indicates the second principal component direction.
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Computation of Principal Components

• Suppose we have a n× p data set X. Since we are only
interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the
column means of X are zero).

• We then look for the linear combination of the sample
feature values of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to
the constraint that

∑p
j=1 φ

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for
any values of φj1). Hence the sample variance of the zi1
can be written as 1

n

∑n
i=1 z

2
i1.
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Computation: continued

• Plugging in (1) the first principal component loading vector
solves the optimization problem

maximize
φ11,...,φp1

1

n

n∑
i=1

 p∑
j=1

φj1xij

2

subject to

p∑
j=1

φ2j1 = 1.

• This problem can be solved via a singular-value
decomposition of the matrix X, a standard technique in
linear algebra.

• We refer to Z1 as the first principal component, with
realized values z11, . . . , zn1
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Geometry of PCA

• The loading vector φ1 with elements φ11, φ21, . . . , φp1
defines a direction in feature space along which the data
vary the most.

• If we project the n data points x1, . . . , xn onto this
direction, the projected values are the principal component
scores z11, . . . , zn1 themselves.
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Further principal components

• The second principal component is the linear combination
of X1, . . . , Xp that has maximal variance among all linear
combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2
take the form

zi2 = φ12xi1 + φ22xi2 + . . .+ φp2xip,

where φ2 is the second principal component loading vector,
with elements φ12, φ22, . . . , φp2.
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Further principal components: continued

• It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be
orthogonal (perpendicular) to the direction φ1. And so on.

• The principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of right singular vectors of the matrix X,
and the variances of the components are 1

n times the
squares of the singular values. There are at most
min(n− 1, p) principal components.
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Illustration

• USAarrests data: For each of the fifty states in the United
States, the data set contains the number of arrests per
100, 000 residents for each of three crimes: Assault, Murder,
and Rape. We also record UrbanPop (the percent of the
population in each state living in urban areas).

• The principal component score vectors have length n = 50,
and the principal component loading vectors have length
p = 4.

• PCA was performed after standardizing each variable to
have mean zero and standard deviation one.
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USAarrests data: PCA plot
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Figure details

The first two principal components for the USArrests data.

• The blue state names represent the scores for the first two
principal components.

• The orange arrows indicate the first two principal
component loading vectors (with axes on the top and
right). For example, the loading for Rape on the first
component is 0.54, and its loading on the second principal
component 0.17 [the word Rape is centered at the point
(0.54, 0.17)].

• This figure is known as a biplot, because it displays both
the principal component scores and the principal
component loadings.
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PCA loadings

PC1 PC2

Murder 0.5358995 -0.4181809
Assault 0.5831836 -0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186
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Another Interpretation of Principal Components

First principal component
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PCA find the hyperplane closest to the observations

• The first principal component loading vector has a very
special property: it defines the line in p-dimensional space
that is closest to the n observations (using average squared
Euclidean distance as a measure of closeness)

• The notion of principal components as the dimensions that
are closest to the n observations extends beyond just the
first principal component.

• For instance, the first two principal components of a data
set span the plane that is closest to the n observations, in
terms of average squared Euclidean distance.
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Scaling of the variables matters
• If the variables are in different units, scaling each to have

standard deviation equal to one is recommended.
• If they are in the same units, you might or might not scale

the variables.
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Proportion Variance Explained

• To understand the strength of each component, we are
interested in knowing the proportion of variance explained
(PVE) by each one.

• The total variance present in a data set (assuming that the
variables have been centered to have mean zero) is defined
as

p∑
j=1

Var(Xj) =

p∑
j=1

1

n

n∑
i=1

x2ij ,

and the variance explained by the mth principal
component is

Var(Zm) =
1

n

n∑
i=1

z2im.

• It can be shown that
∑p

j=1 Var(Xj) =
∑M

m=1 Var(Zm),
with M = min(n− 1, p).
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Proportion Variance Explained: continued
• Therefore, the PVE of the mth principal component is

given by the positive quantity between 0 and 1∑n
i=1 z

2
im∑p

j=1

∑n
i=1 x

2
ij

.

• The PVEs sum to one. We sometimes display the
cumulative PVEs.
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How many principal components should we use?

If we use principal components as a summary of our data, how
many components are sufficient?

• No simple answer to this question, as cross-validation is not
available for this purpose.
• Why not?

• When could we use cross-validation to select the number of
components?

• the “scree plot” on the previous slide can be used as a
guide: we look for an “elbow”.
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Clustering

• Clustering refers to a very broad set of techniques for
finding subgroups, or clusters, in a data set.

• We seek a partition of the data into distinct groups so that
the observations within each group are quite similar to
each other,

• It make this concrete, we must define what it means for
two or more observations to be similar or different.

• Indeed, this is often a domain-specific consideration that
must be made based on knowledge of the data being
studied.

23 / 50



PCA vs Clustering

• PCA looks for a low-dimensional representation of the
observations that explains a good fraction of the variance.

• Clustering looks for homogeneous subgroups among the
observations.
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Clustering for Market Segmentation

• Suppose we have access to a large number of measurements
(e.g. median household income, occupation, distance from
nearest urban area, and so forth) for a large number of
people.

• Our goal is to perform market segmentation by identifying
subgroups of people who might be more receptive to a
particular form of advertising, or more likely to purchase a
particular product.

• The task of performing market segmentation amounts to
clustering the people in the data set.
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Two clustering methods

• In K-means clustering, we seek to partition the
observations into a pre-specified number of clusters.

• In hierarchical clustering, we do not know in advance how
many clusters we want; in fact, we end up with a tree-like
visual representation of the observations, called a
dendrogram, that allows us to view at once the clusterings
obtained for each possible number of clusters, from 1 to n.
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K-means clustering
K=2 K=3 K=4

A simulated data set with 150 observations in 2-dimensional
space. Panels show the results of applying K-means clustering
with different values of K, the number of clusters. The color of
each observation indicates the cluster to which it was assigned
using the K-means clustering algorithm. Note that there is no
ordering of the clusters, so the cluster coloring is arbitrary.
These cluster labels were not used in clustering; instead, they
are the outputs of the clustering procedure.
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Details of K-means clustering

Let C1, . . . , CK denote sets containing the indices of the
observations in each cluster. These sets satisfy two properties:

1. C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each
observation belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k 6= k′. In other words, the clusters are
non-overlapping: no observation belongs to more than one
cluster.

For instance, if the ith observation is in the kth cluster, then
i ∈ Ck.
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Details of K-means clustering: continued

• The idea behind K-means clustering is that a good
clustering is one for which the within-cluster variation is as
small as possible.

• The within-cluster variation for cluster Ck is a measure
WCV(Ck) of the amount by which the observations within
a cluster differ from each other.

• Hence we want to solve the problem

minimize
C1,...,CK

{
K∑
k=1

WCV(Ck)

}
. (2)

• In words, this formula says that we want to partition the
observations into K clusters such that the total
within-cluster variation, summed over all K clusters, is as
small as possible.
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How to define within-cluster variation?

• Typically we use Euclidean distance

WCV(Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2, (3)

where |Ck| denotes the number of observations in the kth
cluster.

• Combining (2) and (3) gives the optimization problem that
defines K-means clustering,

minimize
C1,...,CK


K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2
 . (4)
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K-Means Clustering Algorithm

1. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for
the observations.

2. Iterate until the cluster assignments stop changing:

2.1 For each of the K clusters, compute the cluster centroid.
The kth cluster centroid is the vector of the p feature means
for the observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is
closest (where closest is defined using Euclidean distance).
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Properties of the Algorithm

• This algorithm is guaranteed to decrease the value of the
objective (4) at each step. Why?

Note that

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2 = 2
∑
i∈Ck

p∑
j=1

(xij − x̄kj)2,

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in
cluster Ck.

• however it is not guaranteed to give the global minimum.
Why not?
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Example
Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results
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Details of Previous Figure

The progress of the K-means algorithm with K=3.

• Top left: The observations are shown.

• Top center: In Step 1 of the algorithm, each observation is
randomly assigned to a cluster.

• Top right: In Step 2(a), the cluster centroids are computed.
These are shown as large colored disks. Initially the
centroids are almost completely overlapping because the
initial cluster assignments were chosen at random.

• Bottom left: In Step 2(b), each observation is assigned to
the nearest centroid.

• Bottom center: Step 2(a) is once again performed, leading
to new cluster centroids.

• Bottom right: The results obtained after 10 iterations.
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Example: different starting values
320.9 235.8 235.8

235.8 235.8 310.9
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Details of Previous Figure

K-means clustering performed six times on the data from
previous figure with K = 3, each time with a different random
assignment of the observations in Step 1 of the K-means
algorithm.
Above each plot is the value of the objective (4).
Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better
separation between the clusters.
Those labeled in red all achieved the same best solution, with
an objective value of 235.8
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Hierarchical Clustering

• K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

• Hierarchical clustering is an alternative approach which
does not require that we commit to a particular choice of
K.

• In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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Hierarchical Clustering Algorithm
The approach in words:
• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.
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An Example
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45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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Application of hierarchical clustering
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Details of previous figure

• Left: Dendrogram obtained from hierarchically clustering
the data from previous slide, with complete linkage and
Euclidean distance.

• Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in different colors.

• Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in different colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure
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Types of Linkage

Linkage Description

Complete

Maximal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the largest of
these dissimilarities.

Single

Minimal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the smallest of
these dissimilarities.

Average

Mean inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the average of
these dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Cen-
troid linkage can result in undesirable inversions.
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Choice of Dissimilarity Measure
• So far have used Euclidean distance.
• An alternative is correlation-based distance which considers

two observations to be similar if their features are highly
correlated.
• This is an unusual use of correlation, which is normally

computed between variables; here it is computed between
the observation profiles for each pair of observations.
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Practical issues

• Scaling of the variables matters!. Should the observations
or features first be standardized in some way? For
instance, maybe the variables should be centered to have
mean zero and scaled to have standard deviation one.

• In the case of hierarchical clustering,
• What dissimilarity measure should be used?
• What type of linkage should be used?

• How many clusters to choose? (in both K-means or
hierarchical clustering). Difficult problem. No agreed-upon
method. See Elements of Statistical Learning, chapter 13
for more details.

• Which features should we use to drive the clustering?
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Example: breast cancer microarray study

• “Repeated observation of breast tumor subtypes in
independent gene expression data sets;” Sorlie at el, PNAS
2003

• Gene expression measurements for about ∼ 8000 genes, for
each of 88 breast cancer patients.

• Average linkage, correlation metric

• Clustered samples using 500 intrinsic genes: each woman
was measured before and after chemotherapy. Intrinsic
genes have smallest within/between variation.
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West et al. data sets (Table 4). We note that prediction accuracies
reported above are somewhat optimistic, as some of the genes
used as predictors were used to define the test set groups in the
first place.

Tumor Subtypes Are Associated with Significant Difference in Clinical
Outcome. In our previous work, the expression-based tumor sub-
types were associated with a significant difference in overall survival
as well as disease-free survival for the patients suffering from locally
advanced breast cancer and belonging to the same treatment
protocol (6). To investigate whether these subtypes were also
associated with a significant difference in outcome in other patient
cohorts, we performed a univariate Kaplan–Meier analysis with
time to development of distant metastasis as a variable in the data
set comprising the 97 sporadic tumors taken from van’t Veer et al.

As shown in Fig. 5, the probability of remaining disease-free was
significantly different between the subtypes; patients with luminal
A type tumors lived considerably longer before they developed
metastatic disease, whereas the basal and ERBB2� groups showed
much shorter disease-free time intervals. Although the method-
ological differences prevent a definitive interpretation, it is notable
that the order of severity of clinical outcome associated with the
several subtypes is similar in the two dissimilar cohorts. We could
not carry out a similar analysis in the West et al. data because the
necessary follow-up data were not provided.

Discussion
Breast Tumor Subtypes Represent Distinct Biological Entities. Gene
expression studies have made it clear that there is considerable
diversity among breast tumors, both biologically and clinically (5, 6,

Fig. 1. Hierarchical clustering of 115 tumor tissues and 7 nonmalignant tissues using the ‘‘intrinsic’’ gene set. (A) A scaled-down representation of the entire cluster
of 534 genes and 122 tissue samples based on similarities in gene expression. (B) Experimental dendrogram showing the clustering of the tumors into five subgroups.
Branches corresponding to tumors with low correlation to any subtype are shown in gray. (C) Gene cluster showing the ERBB2 oncogene and other coexpressed genes.
(D) Gene cluster associated with luminal subtype B. (E) Gene cluster associated with the basal subtype. (F) A gene cluster relevant for the normal breast-like group. (G)
Cluster of genes including the estrogen receptor (ESR1) highly expressed in luminal subtype A tumors. Scale bar represents fold change for any given gene relative to
the median level of expression across all samples. (See also Fig. 6.)
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Another expectation from the concept that the tumor subtypes
represent different biological entities is that genetic predispositions
to breast cancer might give rise preferentially to certain subtypes.
This expectation is amply fulfilled by our finding in the data of van’t

Veer et al., which shows that the women carrying BRCA1-mutated
alleles all had tumors with the basal-like gene expression pattern.

Tumor Subtypes and Clinical Outcome. Consistent with the results
previously found in our data (6), we also found differences in
clinical outcome associated with the different tumor subtypes in the
data set produced by van’t Veer et al. The outcomes, as measured
here in time to development of distant metastasis, were strikingly
similar to what we found previously: worst for basal (and
ERBB2�), best for luminal A, and intermediate for luminal B
subtypes. Recently, two reports corroborating the poor outcome of
the basal subtype solely based on immunohistochemistry with
antibodies against keratins 5 and 17 and Skp2, strongly supports our
results (24, 25). The finding that our gene cluster profile was of
similar prognostic importance in the van’t Veer et al. cohort as
among our patients is remarkable, taking into account differences
regarding disease stage (locally advanced versus stage I primaries)
and patient age, but in particular, the fact that the Norwegian
patients had presurgical chemotherapy and all patients expressing
ESR1 received adjuvant endocrine treatment, whereas the patients
from van’t Veer et al. in general did not receive any systemic
adjuvant treatment.

The observation that BRCA1 mutations are strongly associated
with a basal tumor phenotype indicates a particularly poor prog-
nosis for these patients. BRCA1-associated breast cancers are
usually highly proliferative and TP53-mutated, and usually lack
expression of ESR1 and ERBB2 (20, 26). Status of BRCA1 in
familial cancers has failed to be an independent prognostic factor
in several studies (reviewed in ref. 27), and is complicated by
confounding factors such as frequent screening and early diagnosis.

Molecular Marker Identification. In a mixture of biologically distinct
subtypes, it may well be that individual markers derived by super-
vised analysis will under-perform what is possible if tumor subtypes
were separated before searching, in a supervised fashion, for
prognostic indicators. Indeed, when we tested the prognostic impact
of the 231 markers published by van’t Veer et al. on the Norwegian
cohort, we found that they performed less well (47%) in predicting
recurrences within 5 years (see Materials and Methods). This may in
part be due to differences in the patient cohorts and treatments as
discussed above.

Both van’t Veer et al. and West et al. showed the ability of gene

Fig. 4. Hierarchical clustering of gene expression
data from West et al. (A) Scaled-down representation
of the full cluster of 242 intrinsic genes across 49 breast
tumors. (B) Dendrogram displaying the relative orga-
nization of the tumor samples. Branches are colored
according to which subtype the corresponding tumor
showed the strongest correlation with. Gray branches
indicate tumors with low correlation (�0.1) to any
specific subtype. (C) Luminalepithelial�estrogenrecep-
tor gene cluster. (D) Basal gene cluster. (E) ERBB2�
gene cluster. (See also Fig. 9, which is published as
supporting information on the PNAS web site.)

Fig. 5. Kaplan–Meier analysis of disease outcome in two patient cohorts. (A)
Time to development of distant metastasis in the 97 sporadic cases from van’t
Veer et al. Patients were stratified according to the subtypes as shown in Fig. 2B.
(B) Overall survival for 72 patients with locally advanced breast cancer in the
Norway cohort. The normal-like tumor subgroups were omitted from both data
sets in this analysis.
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Conclusions

• Unsupervised learning is important for understanding the
variation and grouping structure of a set of unlabeled data,
and can be a useful pre-processor for supervised learning

• It is intrinsically more difficult than supervised learning
because there is no gold standard (like an outcome
variable) and no single objective (like test set accuracy).

• It is an active field of research, with many recently
developed tools such as self-organizing maps, independent
components analysis and spectral clustering.
See The Elements of Statistical Learning, chapter 14.
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Matrix Completion and Missing Values

• It is often the case that data matrices X have missing
entries, often represented by NAs (not available).

• This is a nuisance, since many of our modeling procedures,
such as linear regression and GLMs require complete data.

• Sometimes imputation is the prediction problem! — as in
recommender systems.

• One simple approach is mean imputation — replace missing
values for a variable by the mean of the non-missing entries.

• This ignores the correlations among variables; we should be
able to exploit these correlations when imputing missing
values.

• We assume values are missing at random; i.e. the
missingness should not be informative.

• We present an approach based on principal components.
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Customer 1 • • • • 4 • • • • • · · ·
Customer 2 • • 3 • • • 3 • • 3 · · ·
Customer 3 • 2 • 4 • • • • 2 • · · ·
Customer 4 3 • • • • • • • • • · · ·
Customer 5 5 1 • • 4 • • • • • · · ·
Customer 6 • • • • • 2 4 • • • · · ·
Customer 7 • • 5 • • • • 3 • • · · ·
Customer 8 • • • • • • • • • • · · ·
Customer 9 3 • • • 5 • • 1 • • · · ·

...
...
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...
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...
...

...
...

...
. . .

TABLE 12.2. Excerpt of the Netflix movie rating data. The movies are rated
from 1 (worst) to 5 (best). The symbol • represents a missing value: a movie that
was not rated by the corresponding customer.

customers, to suggest other content for the customer. As a concrete ex-
ample, some years back, Netflix had customers rate each movie that they
had seen with a score from 1–5. This resulted in a very big n ⇥ p matrix
for which the (i, j) element is the rating given by the ith customer to the
jth movie. One specific early example of this matrix had n = 480,189 cus-
tomers and p = 17,770 movies. However, on average each customer had seen
around 200 movies, so 99% of the matrix had missing elements. Table 12.3
illustrates the setup.

In order to suggest a movie that a particular customer might like, Netflix
needed a way to impute the missing values of this data matrix. The key idea
is as follows: the set of movies that the ith customer has seen will overlap
with those that other customers have seen. Furthermore, some of those
other customers will have similar movie preferences to the ith customer.
Thus, it should be possible to use similar customers’ ratings of movies that
the ith customer has not seen to predict whether the ith customer will like
those movies.

More concretely, by applying Algorithm 12.1, we can predict the ith cus-
tomer’s rating for the jth movie using x̂ij =

PM
m=1 âimb̂jm. Furthermore,

we can interpret the M components in terms of “cliques” and “genres”:

• âim represents the strength with which the ith user belongs to the
mth clique, where a clique is a group of customers that enjoys movies
of the mth genre;

• b̂jm represents the strength with which the jth movie belongs to the
mth genre.

• Netflix users rate movies they have seen, usually a very
small fraction of available movies.

• Predicting missing ratings provides a way to recommend
movies to users. Matrix completion is one of the primary
tools.
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Matrix Approximation via Principal Components

In Section 12.2.2 we gave an interpretation of principal
components in terms of matrix approximation:

minimize
A∈Rn×M ,B∈Rp×M





p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

aimbjm

)2


 .

A is a n×M matrix whose (i,m) element is aim, and B is a
p×M element whose (j,m) element is bjm.

• It can be shown that for any value of M , the first M
principal components provide a solution: âim = zim and
b̂jm = φjm.

• But what to do if the matrix has missing elements?
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Matrix Completion via Principal Components

We pose instead a modified version of the approximation
criterion:

minimize
A∈Rn×M ,B∈Rp×M




∑

(i,j)∈O

(
xij −

M∑

m=1

aimbjm

)2


 ,

where O is the set of all observed pairs of indices (i, j), a subset
of the possible n× p pairs.

Once we solve this problem:

• we can estimate a missing observation xij using

x̂ij =
∑M

m=1 âimb̂jm, where âim and b̂jm are the (i,m) and

(j,m) elements of the solution matrices Â and B̂.

• we can (approximately) recover the M principal component
scores and loadings, as if data were complete.
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Iterative Algorithm for Matrix Completion

1. Initialize: create a complete data matrix X̃ by filling in the
missing values using mean imputation.

2. Repeat: steps (a)–(c) until the objective in (c) fails to
decrease:
(a)

minimize
A∈Rn×M ,B∈Rp×M





p∑

j=1

n∑

i=1

(
x̃ij −

M∑

m=1

aimbjm

)2




by computing the principal components of X̃.
(b) For each missing entry (i, j) /∈ O, set x̃ij ←

∑M
m=1 âimb̂jm.

(c) Compute the objective

∑

(i,j)∈O

(
xij −

M∑

m=1

âimb̂jm

)2

.

3. Return the estimated missing entries x̃ij , (i, j) /∈ O.
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Example: USAarrests Data
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Here X has 50 rows
(states) and four
columns: Murder,
Assault, Rape and
UrbanPop.

We selected 20 states
at random, and for
each we selected one
of the variables at
random, and set its
value to NA.

Used M = 1 principal
component in algo-
rithm.

Correlation 0.63 between original and imputed values.
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Example — Continued

• The USArrests data has only four variables, which is on
the low end for this method to work well. For this reason,
for this demonstration we randomly set at most one
variable per state to be missing, and only used M = 1
principal component.

• In general, in order to apply this algorithm, we must select
M , the number of principal components to use for the
imputation.

• One approach is to randomly set to NA some elements that
were actually observed, and select M based on how well
those known values are recovered. This is closely related to
the validation-set approach seen in Chapter 5.

• softImpute package in R implements matrix completion
algorithms, and can manage Netflix-scale matrices.
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