
Survival Analysis

• Survival analysis concerns a special kind of outcome
variable: the time until an event occurs.

• For example, suppose that we have conducted a five-year
medical study, in which patients have been treated for
cancer.

• We would like to fit a model to predict patient survival
time, using features such as baseline health measurements
or type of treatment.

• Sounds like a regression problem. But there is an important
complication: some of the patients have survived until the
end of the study. Such a patient’s survival time is said to
be censored.

• We do not want to discard this subset of surviving
patients, since the fact that they survived at least five
years amounts to valuable information.
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Some of the big names in this field

Edward Kaplan Paul Meier
David Cox

Nathan Mantel William Haenszel

(log rank test)

Terry Therneau

(author of Survival package in R)
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Non-medical Examples

• The applications of survival analysis extend far beyond
medicine. For example, consider a company that wishes to
model churn, the event when customers cancel subscription
to a service.

• The company might collect data on customers over some
time period, in order to predict each customer’s time to
cancellation.

• However, presumably not all customers will have cancelled
their subscription by the end of this time period; for such
customers, the time to cancellation is censored.

• Survival analysis is a very well-studied topic within
statistics. However, it has received relatively little
attention in the machine learning community.
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Survival and Censoring Times

• For each individual, we suppose that there is a true failure
or event time T , as well as a true censoring time C.

• The survival time represents the time at which the event of
interest occurs (such as death).

• By contrast, the censoring is the time at which censoring
occurs: for example, the time at which the patient drops
out of the study or the study ends.
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Survival and Censoring Times — Continued

• We observe either the survival time T or else the censoring
time C. Specifically, we observe the random variable

Y = min(T,C).

• If the event occurs before censoring (i.e. T < C) then we
observe the true survival time T ; if censoring occurs before
the event (T > C) then we observe the censoring time. We
also observe a status indicator,

δ =

{
1 if T ≤ C
0 if T > C.

• Finally, in our dataset we observe n pairs (Y, δ), which we
denote as (y1, δ1), . . . , (yn, δn).
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Illustration

Here is an illustration of censored survival data. For patients 1 and 3,

the event was observed. Patient 2 was alive when the study ended.

Patient 4 dropped out of the study.
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A Closer Look at Censoring

• Suppose that a number of patients drop out of a cancer
study early because they are very sick.

• An analysis that does not take into consideration the
reason why the patients dropped out will likely
overestimate the true average survival time.

• Similarly, suppose that males who are very sick are more
likely to drop out of the study than females who are very
sick. Then a comparison of male and female survival times
may wrongly suggest that males survive longer than
females.

• In general, we need to assume that, conditional on the
features, the event time T is independent of the censoring
time C. The two examples above violate the assumption of
independent censoring.
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The Survival Curve

• The survival function (or curve) is defined as

S(t) = Pr(T > t).

• This decreasing function quantifies the probability of
surviving past time t.

• For example, suppose that a company is interested in
modeling customer churn. Let T represent the time that a
customer cancels a subscription to the company’s service.

• Then S(t) represents the probability that a customer
cancels later than time t. The larger the value of S(t), the
less likely that the customer will cancel before time t.
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Estimating the Survival Curve

• Consider the BrainCancer dataset, which contains the
survival times for patients with primary brain tumors
undergoing treatment with stereotactic radiation methods.

• The predictors are gtv (gross tumor volume, in cubic
centimeters); sex (male or female); diagnosis (meningioma,
LG glioma, HG glioma, or other); loc (the tumor location:
either infratentorial or supratentorial); ki (Karnofsky
index); and stereo (stereotactic method).

• Only 53 of the 88 patients were still alive at the end of the
study.
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Estimating the Survival Curve — Continued

• Suppose we’d like to estimate S(20) = Pr(T > 20), the
probability that a patient survives for at least 20 months,

• It is tempting to simply compute the proportion of patients
who are known to have survived past 20 months, that is,
the proportion of patients for whom Y > 20.

• This turns out to be 48/88, or approximately 55%.

• However, this does not seem quite right: 17 of the 40
patients who did not survive to 20 months were actually
censored, and this analysis implicitly assumes they died
before 20 months. Hence it is probably an underestimate.
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Those big names again

Edward Kaplan Paul Meier
David Cox

Nathan Mantel William Haenszel

(log rank test)

Terry Therneau

(author of Survival package in R)
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The Kaplan-Meier Estimate: Example
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Resulting KM Survival Curve

40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
(t

)

4/5

(4/5)x(2/3)

0

16 / 53



Kaplan-Meier Survival Curve for the BrainCancer Data
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Each point in the solid step-like curve shows the estimated probability
of surviving past the time indicated on the horizontal axis.

The estimated probability of survival past 20 months is 71%, which is

quite a bit higher than the naive estimate of 55% presented earlier.
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The Log-Rank Test
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We wish to compare the survival of males to that of females.
Shown are the Kaplan-Meier survival curves for the two groups.
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Those big names again

Edward Kaplan Paul Meier
David Cox

Nathan Mantel William Haenszel

(log rank test)

Terry Therneau

(author of Survival package in R)
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The Log-Rank Test — Continued

• Females seem to fare a little better up to about 50 months,
but then the two curves both level off to about 50%. How
can we carry out a formal test of equality of the two
survival curves?

• At first glance, a two-sample t-test seems like an obvious
choice: but the presence of censoring again creates a
complication.

• To overcome this challenge, we will conduct a log-rank test.
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The Log-Rank Test — Continued

• Recall that d1 < d2 < · · · < dK are the unique death times
among the non-censored patients, rk is the number of
patients at risk at time dk, and qk is the number of patients
who died at time dk.

• We further define r1k and r2k to be the number of patients
in groups 1 and 2, respectively, who are at risk at time dk.

• Similarly, we define q1k and q2k to be the number of
patients in groups 1 and 2, respectively, who died at time
dk. Note that r1k + r2k = rk and q1k + q2k = qk.
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Details of the Test Statistic

Group 1 Group 2 Total

Died q1k q2k qk
Survived r1k − q1k r2k − q2k rk − qk
Total r1k r2k rk

At each death time dk, we construct a 2× 2 table of counts of
the form shown above.

Note that if the death times are unique (i.e. no two individuals
die at the same time), then one of q1k and q2k equals one, and
the other equals zero.
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Log Rank Test: the Main Idea

• To test H0 : E(X) = 0 for some random variable X, one
approach is to construct a test statistic of the form

W =
X − E(X)√

Var(X)
,

where E(X) and Var(X) are the expectation and variance,
respectively, of X under H0.

• In order to construct the log-rank test statistic, we
compute a quantity that takes exactly the form above, with
X =

∑K
k=1 q1k, where q1k is given in the top left of the

table above.
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The Final Result

The resulting formula for the log-rank test statistic is

W =

∑K
k=1 (q1k − E(q1k))√∑K

k=1 Var (q1k)
=

∑K
k=1

(
q1k − qk

rk
r1k

)
√∑K

k=1
qk(r1k/rk)(1−r1k/rk)(rk−qk)

rk−1

.

When the sample size is large, the log-rank test statistic W has
approximately a standard normal distribution.

This can be used to compute a p-value for the null hypothesis
that there is no difference between the survival curves in the
two groups.
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Application to the Brain Cancer Dataset

• Comparing the survival times of females and males on the
BrainCancer data gives a log-rank test statistic of W = 1.2,
which corresponds to a two-sided p-value of 0.2.

• Thus, we cannot reject the null hypothesis of no difference
in survival curves between females and males.

• The log-rank test is closely related to Cox’s proportional
hazards model, which we discuss next.
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Regression Models with a Survival Response

• We now consider the task of fitting a regression model to
survival data.

• We wish to predict the true survival time T .
Since the observed quantity Y = min(T,C) is positive and
may have a long right tail, we might be tempted to fit a
linear regression of log(Y ) on X. But censoring again
creates a problem.

• To overcome this difficulty, we instead make use of a
sequential construction, similar to the idea used for the
Kaplan-Meier survival curve.
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The Hazard Function

The hazard function or hazard rate — also known as the force of
mortality — is formally defined as

h(t) = lim
∆t→0

Pr(t < T ≤ t+ ∆t|T > t)

∆t
,

where T is the (true) survival time.

It is the death rate in the instant after time t, given survival up
to that time.

The hazard function is the basis for the Proportional Hazards
Model, discussed next.
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Bringing in the covariates: those big names again

Edward Kaplan Paul Meier
David Cox

Nathan Mantel William Haenszel

(log rank test)

Terry Therneau

(author of Survival package in R)
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The Proportional Hazards Model

• The proportional hazards assumption states that

h(t|xi) = h0(t) exp

 p∑
j=1

xijβj

 ,

where h0(t) ≥ 0 is an unspecified function, known as the
baseline hazard. It is the hazard function for an individual
with features xi1 = · · · = xip = 0.

• The name proportional hazards arises from the fact that
the hazard function for an individual with feature vector xi
is some unknown function h0(t) times the factor

exp
(∑p

j=1 xijβj

)
. The quantity exp

(∑p
j=1 xijβj

)
is called

the relative risk for the feature vector xi = (xi1, . . . , xip),
relative to that for the feature vector xi = (0, . . . , 0).
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Proportional Hazards Model— Continued

• What does it mean that the baseline hazard function h0(t)
is unspecified?

• Basically, we make no assumptions about its functional
form. We allow the instantaneous probability of death at
time t, given that one has survived at least until time t, to
take any form.

• This means that the hazard function is very flexible and
can model a wide range of relationships between the
covariates and survival time.

• Our only assumption is that a one-unit increase in xij
corresponds to an increase in h(t|xi) by a factor of exp(βj).
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An Example
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Here is an example with p = 1 and a binary covariate xi ∈ {0, 1}.
Top row: the log hazard and the survival function under the model
are shown (green for xi = 0 and black for xi = 1). Because of the
proportional hazards assumption, the log hazard functions differ by a
constant, and the survival functions do not cross.

Bottom row: the proportional hazards assumption does not hold.
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Partial Likelihood

• Because the form of the baseline hazard is unknown, we
cannot simply plug h(t|xi) into the likelihood and then
estimate β = (β1, . . . , βp)

T by maximum likelihood.

• The magic of Cox’s proportional hazards model lies in the
fact that it is in fact possible to estimate β without having
to specify the form of h0(t).

• To accomplish this, we make use of the same “sequential in
time” logic that we used to derive the Kaplan-Meier
survival curve and the log-rank test. Then the total hazard
at failure time yi for the at-risk observations is

∑
i′:yi′≥yi

h0(yi) exp

 p∑
j=1

xi′jβj

 .

32 / 53



Partial Likelihood

• Because the form of the baseline hazard is unknown, we
cannot simply plug h(t|xi) into the likelihood and then
estimate β = (β1, . . . , βp)

T by maximum likelihood.

• The magic of Cox’s proportional hazards model lies in the
fact that it is in fact possible to estimate β without having
to specify the form of h0(t).

• To accomplish this, we make use of the same “sequential in
time” logic that we used to derive the Kaplan-Meier
survival curve and the log-rank test. Then the total hazard
at failure time yi for the at-risk observations is

∑
i′:yi′≥yi

h0(yi) exp

 p∑
j=1

xi′jβj

 .

32 / 53



Partial Likelihood

• Because the form of the baseline hazard is unknown, we
cannot simply plug h(t|xi) into the likelihood and then
estimate β = (β1, . . . , βp)

T by maximum likelihood.

• The magic of Cox’s proportional hazards model lies in the
fact that it is in fact possible to estimate β without having
to specify the form of h0(t).

• To accomplish this, we make use of the same “sequential in
time” logic that we used to derive the Kaplan-Meier
survival curve and the log-rank test. Then the total hazard
at failure time yi for the at-risk observations is

∑
i′:yi′≥yi

h0(yi) exp

 p∑
j=1

xi′jβj

 .

32 / 53



Partial Likelihood

• Because the form of the baseline hazard is unknown, we
cannot simply plug h(t|xi) into the likelihood and then
estimate β = (β1, . . . , βp)

T by maximum likelihood.

• The magic of Cox’s proportional hazards model lies in the
fact that it is in fact possible to estimate β without having
to specify the form of h0(t).

• To accomplish this, we make use of the same “sequential in
time” logic that we used to derive the Kaplan-Meier
survival curve and the log-rank test. Then the total hazard
at failure time yi for the at-risk observations is

∑
i′:yi′≥yi

h0(yi) exp

 p∑
j=1

xi′jβj

 .

32 / 53



Partial Likelihood — Continued

• Therefore, the probability that the ith observation is the
one to fail at time yi (as opposed to one of the other
observations in the risk set) is

h0(yi) exp
(∑p

j=1 xijβj

)
∑

i′:yi′≥yi
h0(yi) exp

(∑p
j=1 xi′jβj

) =
exp

(∑p
j=1 xijβj

)
∑

i′:yi′≥yi
exp

(∑p
j=1 xi′jβj

) .
• Notice that the unspecified baseline hazard function h0(yi)

cancels out of the numerator and denominator!
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Partial Likelihood — Continued

• The partial likelihood is simply the product of these
probabilities over all of the uncensored observations,

PL(β) =
∏
i:δi=1

exp
(∑p

j=1 xijβj

)
∑

i′:yi′≥yi
exp

(∑p
j=1 xi′jβj

) .
• Critically, the partial likelihood is valid regardless of the

true value of h0(t), making the model very flexible and
robust.
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The Partial Likelihood: Example
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Relative Risk Functions at each Failure Time

RR1(β) =
exp

(∑p
j=1 x1jβj

)
∑

i′:yi′≥y1
exp

(∑p
j=1 xi′jβj

)
RR3(β) =

exp
(∑p

j=1 x3jβj

)
∑

i′:yi′≥y3
exp

(∑p
j=1 xi′jβj

)
RR5(β) =

exp
(∑p

j=1 x5jβj

)
∑

i′:yi′≥y5
exp

(∑p
j=1 xi′jβj

)
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Second Failure
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Third Failure
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PL(β)=RR1(β) ⋅ RR3(β) ⋅ RR5(β)
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Partial Likelihood — Computation

• To estimate β, we simply maximize the partial likelihood
with respect to β. As is the case for logistic regression, no
closed-form solution is available, and so iterative
algorithms are required.

• In addition to estimating β, we can also obtain other model
outputs, like those in least squares regression and logistic
regression.

• For example, we can obtain p-values corresponding to
particular null hypotheses (e.g. H0 : βj = 0), as well as
estimated standard errors and confidence intervals
associated with the coefficients.
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Connection with the Log-Rank Test

• Suppose that we have just a single predictor (p = 1) with
xi ∈ {0, 1}. To test whether there is a difference between
the survival times of the observations in the two groups, we
can consider taking two possible approaches:

1. Fit a Cox proportional hazards model, and test the null
hypothesis H0 : β = 0. (Since p = 1, β is a scalar.)

2. Perform a log-rank test to compare the two groups.

• Now when taking approach #1, there are a number of
possible ways to test H0. One way is known as a score test.

• It turns out that in the case of a single binary covariate,
the score test for H0 : β = 0 in Cox’s proportional hazards
model is exactly equal to the log-rank test.
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The Proportional Hazards Model— Additional Details
The discussion of the proportional hazards model glossed over a
few subtleties:

• There is no intercept in the proportional hazards model
because an intercept can be absorbed into the baseline
hazard h0(t).
• We have assumed that there are no tied failure times. In

the case of ties, the exact form of the partial likelihood is
more complicated, and a number of computational
approximations must be used.
• The partial likelihood gets its name because it is not exactly

a likelihood. However, it is a very good approximation.
• We have focused only on estimation of the coefficients β.

However, we may also wish to estimate the baseline hazard
h0(t), for instance so that we can estimate the survival
curve S(t|x). These are implemented in the survival

package in R.
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approximations must be used.
• The partial likelihood gets its name because it is not exactly

a likelihood. However, it is a very good approximation.
• We have focused only on estimation of the coefficients β.

However, we may also wish to estimate the baseline hazard
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Example: Brain Cancer Data
Coefficient Std. error z-statistic p-value

sex[Male] 0.18 0.36 0.51 0.61
diagnosis[LG Glioma] 0.92 0.64 1.43 0.15
diagnosis[HG Glioma] 2.15 0.45 4.78 0.00
diagnosis[Other] 0.89 0.66 1.35 0.18
loc[Supratentorial] 0.44 0.70 0.63 0.53
ki -0.05 0.02 -3.00 <0.01
gtv 0.03 0.02 1.54 0.12
stereo[SRT] 0.18 0.60 0.30 0.77

• This table shows the result of fitting the proportional hazards
model to the BrainCancer data.

• We see for example that each one-unit increase in the Karnofsky
index corresponds to a multiplier of exp(−0.05) = 0.95 in the
instantaneous chance of dying.

• In other words, the higher the Karnofsky index, the lower the
chance of dying at any given point in time. This effect is highly
significant, with a p-value of 0.0027.
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Example: Publication Data
Next, we consider the Publication dataset involving the time
to publication of journal papers reporting the results of clinical
trials funded by the National Heart, Lung, and Blood Institute.

• For 244 trials, the time in months until publication is
recorded. Of the 244 trials, only 156 were published during
the study period; the remaining studies were censored.
• The covariates include whether the trial focused on a

clinical endpoint (clinend), whether the trial involved
multiple centers (multi), the funding mechanism within the
National Institutes of Health (mech), trial sample size
(sampsize), budget (budget), impact (impact, related to the
number of citations), and whether the trial produced a
positive (significant) result (posres).
• The last covariate is particularly interesting, as a number

of studies have suggested that positive trials have a higher
publication rate.
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Publication Data — Continued
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• The figure above shows the Kaplan-Meier curves for the time
until publication, stratified by whether or not the study
produced a positive result.

• We see slight evidence that time until publication is lower for
studies with a positive result. However, the log-rank test yields a
very unimpressive p-value of 0.36.
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Publication Data: Multivariate Analysis

Coefficient Std. error z-statistic p-value
posres[Yes] 0.55 0.18 3.02 0.00
multi[Yes] 0.15 0.31 0.47 0.64
clinend[Yes] 0.51 0.27 1.89 0.06
mech[K01] 1.05 1.06 1.00 0.32
many mech lines omitted
sampsize 0.00 0.00 0.19 0.85
budget 0.00 0.00 1.67 0.09
impact 0.06 0.01 8.23 0.00

• The results of fitting Cox’s proportional hazards model using all
of the available features are shown above.

• We find that the chance of publication of a study with a positive
result is e0.55 = 1.74 times higher than that of a negative result
at any point in time, holding all other covariates fixed.

• The very small p-value associated with posres indicates that
this result is highly significant.
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Digging Deeper

In order to gain more insight into this result, on the next slide
we display estimates of the survival curves associated with
positive and negative results, adjusting for the other predictors.

• To produce these survival curves, we estimated the
underlying baseline hazard h0(t): this is implemented in
the survival package in R, although the details are beyond
the scope of this course.

• We also needed to select representative values for the other
predictors; we used the mean value for each predictor,
except for the categorical predictor mech, for which we used
the most prevalent category (R01).
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Adjusted Survival Curves
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Adjusting for the other predictors, we now see a clear difference
in the survival curves between studies with positive versus
negative results. [What has happened?]
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AUC for Survival Analysis: the C-index

• This is an appealing method for assessing a fitted Cox
model on a test set.

• For each observation, we calculate the estimated risk score,
η̂i = β̂1xi1 + · · ·+ β̂pxip, for i = 1, . . . , n, using the
estimated Cox model coefficients.

• Then Harrell’s concordance index (or C-index) computes
the proportion of observation pairs for which η̂i′ > η̂i and
yi > yi′ :

C =

∑
i,i′:yi>yi′

I(η̂i′ > η̂i)δi′∑
i,i′:yi>yi′

δi′
.

• This is the proportion of pairs for which the model
correctly predicts the relative survival time, among all
pairs for which this can be determined
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C-index: Example

We fit a Cox proportional hazards model on the training set of
the Publication data, and computed the C-index on the test
set.

This yielded C = 0.733. Roughly speaking, given two random
papers from the test set, the model can predict with 73.3%
accuracy which will be published first.
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Additional Topics

Here are some additional topics that are covered in the text:

• Other types of censoring: left and interval censoring.

• The choice of time scale, e.g calendar time or age?

• Time-dependent covariates — where we measure a feature
(like blood pressure) at different time points

• Methods for checking the proportional hazards assumption

There are also approaches for modeling survival data using
other machine learning methods such as random forests,
boosting and neural networks. Some of these avoid the
proportional hazards assumption.
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Those big names one last time

Edward Kaplan Paul Meier
David Cox

Nathan Mantel William Haenszel

(log rank test)

Terry Therneau

(author of Survival package in R)
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Software for Survival Analysis

• The examples in this lecture were creating using the
survival and glmnet packages in R.

• Both packages can handle time-dependent covariates and
general forms of censoring.

• Software for other machine learning approaches can be
found both the R repository and the scikit-survival

Python collection.
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