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ABSTRACT
Booking.com is the world’s largest online travel agent where mil-
lions of guests find their accommodation and millions of accommo-
dation providers list their properties including hotels, apartments,
bed and breakfasts, guest houses, and more. During the last years
we have applied Machine Learning to improve the experience of our
customers and our business. While most of the Machine Learning
literature focuses on the algorithmic or mathematical aspects of
the field, not much has been published about how Machine Learn-
ing can deliver meaningful impact in an industrial environment
where commercial gains are paramount. We conducted an analysis
on about 150 successful customer facing applications of Machine
Learning, developed by dozens of teams in Booking.com, exposed
to hundreds of millions of users worldwide and validated through
rigorous Randomized Controlled Trials. Following the phases of a
Machine Learning project we describe our approach, the many chal-
lenges we found, and the lessons we learned while scaling up such
a complex technology across our organization. Our main conclu-
sion is that an iterative, hypothesis driven process, integrated with
other disciplines was fundamental to build 150 successful products
enabled by Machine Learning.
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• General and reference → Experimentation; • Computing
methodologies→Machine learning;Model development and
analysis; •Applied computing→Electronic commerce;Busi-
ness IT alignment;
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1 INTRODUCTION
Booking.com is the world’s largest online travel agent where mil-
lions of guests find their accommodation and millions of accommo-
dation providers list their properties, including hotels, apartments,
bed and breakfasts, guest houses, etc. Our platform is developed by
many different interdisciplinary teams working on different prod-
ucts, ranging from a large new application like our recent Booking
Assistant, or an important page of the website with rich business
value like the search results page, to a part of it, like the destinations
recommendations displayed at the bottom. Teams have their own
goals, and use different business metrics to quantify the value the
product delivers and to test hypotheses, the core of our learning
process. Several issues make our platform a unique challenge, we
briefly describe them below:

High Stakes: Recommending the wrong movie, song, book, or
product has relevant impact in the consumer experience. Never-
theless, in most cases there is a way to “undo” the selection: stop
listening to a song or watching a movie, even returning a unsat-
isfactory product. But once you arrive to an accommodation that
does not meet your expectations, there is no easy undo option,
generating frustration and disengagement with the platform.

Infinitesimal Queries: Users searching for accommodations barely
specify their destination, maybe the dates and number of guests.
Providing satisfying shopping and accommodation experiences
starting from this almost-zero-query scenario is one of the key
challenges of our platform.

Complex Items: Booking an accommodation requires users to
decide on several aspects like destination, dates, accommodation
type, number of rooms, room types, refund policies, etc. These
elements define a multi-dimensional space where bookable options
are located, and since not all possible combinations exist, it is not
trivial to navigate; users need help to find the best combination.

Constrained Supply: Accommodations have limited and dynamic
availability. Its interaction with prices directly affects guest prefer-
ences and the behavior of accommodation providers. This aspect
cannot be neglected when designing the shopping experience.

Continuous Cold Start: Guests are in a continuous cold start
state [2]. Most people only travel once or twice every year. By
the time they come back to our web site their preferences might
have changed significantly; long in the past history of users is
usually irrelevant. Furthermore, new accommodations and new
accommodation types are added to the supply every day, their lack
of reviews and general content, such as pictures and multilingual
descriptions, make it difficult to give them visibility. Providing a
personalized experience regardless of how often a guest interacts
with Booking.com and being capable to find an audience for every

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1743

https://doi.org/10.1145/3292500.3330744
https://doi.org/10.1145/3292500.3330744
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3292500.3330744&domain=pdf&date_stamp=2019-07-25


property from the very beginning of them joining Booking.com are
difficult and important problems we face.

Content Overload: Accommodations have very rich content, e.g.
descriptions, pictures, reviews and ratings. Destinations themselves
also have rich content including visitor authored pictures, free
text reviews, visitors endorsements and guides. This is a powerful
advertising tool, but also very complex and difficult to be consumed
by guests. Successfully exploiting such rich content by presenting it
to users in an accessible and relevant way is another key challenge
of our platform.

During the last years we have applied Machine Learning tech-
niques to address these and other issues. We found that driving
true business impact is amazingly hard, plus it is difficult to isolate
and understand the connection between efforts on modeling and
the observed impact. Similar issues have been highlighted by a few
authors in the last years. Wagstaff position paper [13] mentions
the lack of studies and lessons on how to exploit Machine Learning
and achieve relevant impact in real world problems. In an example
closer to our industry, Jannach et al. [5] explain how the field of
recommender systems provides little guidance to impact metrics rel-
evant to service providers, such as sales diversification, conversion
rate or loyalty. Many other publications have described specific use
cases of machine learning and their impact on business metrics (e.g.
[10]) but no previous work to our knowledge has studied the overall
process of developing and testing products to obtain business and
user value through Machine Learning.

In this work we analyze 150 successful customer facing appli-
cations of Machine Learning techniques (plus many associated
failures), and share the challenges we found, how we addressed
some of them, lessons that we got along the way, and general rec-
ommendations. Our contributions are:

• A large scale study on the impact of Machine Learning in a
commercial product, to our knowledge the first one in the
field

• A collection of "lessons learned" covering all the phases of a
machine learning project

• A set of techniques to address the challengeswe foundwithin
each project phase

The rest of the paper is organized as a set of lessons associated to
a specific phase of the development process of a Machine Learning
project, namely Inception, Modeling, Deployment, Monitoring and
Evaluation, and a final section where we present our conclusions.

2 INCEPTION: MACHINE LEARNING AS A
SWISS KNIFE FOR PRODUCT
DEVELOPMENT

During the inception phase of a Machine Learning based project,
a product team produces ideas, hypotheses, business cases, etc.,
where Machine Learning fits as part of the solution. One important
lesson we have learned is that Machine Learning can be used for
many and very different products in widely different contexts. In
practice, our models are tools that help different teams improve
their products and learn from their users. At one extreme, we create
models which are very specific for a use case. For instance, they
optimize the size of an specific element of the user interface, or
provide recommendations tailored for one point on the funnel and

one specific context. Because of their specificity, we can design and
tune them to achieve good performance, hoping to create a strong
business impact. The counterside is that their breadth of application
is limited to a few use cases. At the opposite end of the spectrum
we also create models which act as a meaningful semantic layer.
They model understandable concepts, enabling everyone involved
in product development to introduce new features, personalization,
persuasion messages, etc., based on the output of the model. They
could for instance indicate how flexible a user is with respect to
the destination of their trip, giving product teams a concept of
destination-flexibility that they can use to improve their products.
Such models provide an interpretable signal, valid under all the
contexts where the product teams would like to use them. This
requirement limits the coupling between model prediction and
specific target business metrics, but this is counteracted by the
broad adoption such models have, generating often dozens of use
cases all over the platform. Concretely, in our analysis we found
that on average each semantic model generated twice as many use
cases as the specialized ones.

2.1 Model Families
The following paragraphs explore different families of models cur-
rently deployed in our platform, focusing on how they can be used
by product teams to influence our customers. This categorization
works as a tool to generate ideas to exploit the capabilities of Ma-
chine Learning, forming the backbone of our strategy to address
the issues described in the introduction.

2.1.1 Traveller Preference Models. Users display different lev-
els of flexibility on different aspects, from no flexibility at all to
complete indifference. We consider several trip aspects like destina-
tion, property price, property location, quality, dates, and facilities
among others, and build several Machine Learning models that, in
combination, construct a user preference profile assigning a flexi-
bility level to each aspect. Models in this family work as a semantic
layer. As an example the Dates Flexibility model gives a measure
of how flexible a user is about traveling dates. If a user is flexible,
dates recommendations might be relevant in some situations, but
if the user is not flexible, date recommendations might turn out
distracting and confusing, and are therefore not displayed. Another
treatment could focus on inflexible users, re-enforcing the chosen
dates with relevant information like price trends or availability.

2.1.2 Traveller Context Models. Travellers travel as couples, as
families, with a group of friends or alone, either for leisure or for
business. They might go by car to a close by city or by plane to
the other side of the world, and visit one single city for a long
stay or several cities one after the other for shorter periods. All
of these are examples of what we call Traveller Context, which
is a theme of the trip that defines constraints and requirements.
Most of these contexts are not explicitly stated in our platform, and
the ones that can be specified, are usually omitted by most users.
Thus, predicting, or guessing the context of the current user, as
early in the shopping experience as possible, is highly valuable.
The Traveller Context Models also work as a semantic layer, in this
case, enabling teams to create features for specific contexts. As an
example consider the Family Traveller Model, that estimates how

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1744



(a) Traveller Context Model (b) Content Curation Model

(c) Content Augmentation Model

Figure 1: Examples of Application of Machine Learning

likely is that a user is shopping for a family trip. Usually, Family
Travellers forget to fill in the number of children they travel with
(see Figure 1(a)), going through a big part of the shopping process
only to find out that the chosen property is out of availability for
their children. The Family Traveller Model is used to remind the
user to fill in the children information as early in the experience as
possible, hopefully, removing frustration.

2.1.3 Item Space Navigation Models. Most users who browse
our inventory navigate through several supplementary and com-
plementary options and items, such as dates, properties, policies,
locations, etc. In order to make a choice, they need to keep track
of the options they have seen, while exploring neighbouring ones
and trying to make a purchase decision. Our item space navigation
models both feed from this process and try to guide it. They treat
different actions, like scrolling, clicking, sorting, filtering etc., as
implicit feedback about the user preferences. These signals can then
be used to facilitate access to the most relevant items in the user
history, as well as to surface other relevant items in our inventory.

2.1.4 User Interface Optimization Models. Font sizes, number of
items in a list, background colors or images, the presence or absence
of a visual element, etc., all have big impact in user behaviour
as measured by business metrics. Models in this family directly
optimize these parameters with respect to a specific target business
metric. We found that it is hardly the case that one specific value is
optimal across the board, so our models consider context and user
information to decide the best user interface.

2.1.5 Content Curation. Content describing destinations, land-
marks, accommodations, etc., comes in different formats like free
text, structured surveys and photos; and from different sources
like accommodation managers, guests, and public databases. It has
huge potential since it can be used to attract and advertise guests to
specific cities, dates or even properties, but it is also very complex,

noisy and vast, making it hard to be consumed by users. Content
Curation is the process of making content accessible to humans. For
example, we have collected over 171M reviews in more than 1.5M
properties, which contain highly valuable information about the
service a particular accommodation provides and a very rich source
of selling points. A Machine Learning model "curates" reviews, con-
structing brief and representative summaries of the outstanding
aspects of an accommodation (Figure 1(b)).

2.1.6 Content Augmentation. The whole process of users brows-
ing, selecting, booking, and reviewing accommodations, puts to
our disposal implicit signals that allow us to construct deeper un-
derstanding of the services and the quality a particular property or
destination can offer. Models in this family derive attributes of a
property, destination or even specific dates, augmenting the explicit
service offer. Content Augmentation differs from Content Curation
in that curation is about making already existing content easily
accessible by users whereas augmentation is about enriching an
existing entity using data from many others. To illustrate this idea,
we give two examples:

• Great Value: Booking.com provides a wide selection of prop-
erties, offering different levels of value in the form of ameni-
ties, location, quality of the service and facilities, policies,
and many other dimensions. Users need to assess how the
price asked for a room relates to the value they would obtain.
"Great Value Today" icons simplify this process by highlight-
ing properties offering an outstanding value for the price
they are asking, as compared to other available options. A
machine learning model analyses the value proposition of
millions of properties and the transactions and ratings of
millions of users and selects the subset of properties with a
"Great Value" offer.

• Price Trends: Depending on the anticipation of the reserva-
tion, the specific travelling dates and the destination, among
other aspects, prices display different dynamics. Since we
have access to thousands of reservations in each city every
day, we can build an accurate model of the price trend of a
city for a given time and travelling dates. When the model
finds a specific trend, we inform the users to help them make
a better decision, either by encouraging them to choose a
destination and dates that look like an opportunity, or dis-
couraging particular options in favor of others. Note that in
this case, the augmented item is not an accommodation but
a destination (see Figure 1(c)).

2.2 All model families can provide value
Each family of Machine Learned Models provides business value.
This is reflected in Figure 2 where each bar represents the relation
between the median improvement on one of our core metrics by
a model family and a baseline computed as the median improve-
ment on the same metric for of all the successful projects (machine
learning based or not), on a comparable period. Most of the families
contribution are above the benchmark, one is below, but all of them
make a significant contribution, and the collective effect is clearly
positive.

The graph mentioned above shows the direct impact of Machine
Learning based projects, measured at their introduction or when
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Figure 2:Model Families Business Impact relative tomedian impact.

Figure 3: A sequence of experiments on a Recommendations Prod-
uct. Each experiment tests a new version focusing on the indicated
discipline or ML Problem Setup. The length of the bar is the ob-
served impact relative to the first version (all statistically signifi-
cant)

improving the model behind them. We have also observed models
becoming the foundation of a new product, enabling value genera-
tion through other product development disciplines. Such indirect
impact is hard to quantify, but the multiplying effect is clear and
it is a concept that product teams exploit. As an example, Figure
3 illustrates the iterative process of the development of a destina-
tions recommendations system. Each bar represents a successful
iteration starting from the top and focusing on one aspect of the
product: User Interface, Target Audience, Copy (captions, descrip-
tions, messages, etc.), or the Algorithm itself. The length of the
bar indicates the relative (all statistical significant) impact relative
to the first iteration. All these improvements were enabled by the
first algorithm, illustrating the indirect impact of Machine Learning
projects through other disciplines.

3 MODELING: OFFLINE MODEL
PERFORMANCE IS JUST A HEALTH CHECK

A common approach to quantify the quality of a model is to estimate
or predict the performance the model will have when exposed to
data it has never seen before. Different flavors of cross-validation
are used to estimate the value of a specific metric that depends
on the task (classification, regression, ranking). In Booking.com
we are very much concerned with the value a model brings to
our customers and our business. Such value is estimated through
Randomized Controlled Trials (RCTs) and specific business metrics
like conversion, customer service tickets or cancellations. A very
interesting finding is that increasing the performance of a model,
does not necessarily translates to a gain in value. Figure 4 illustrates
this learning. Each point represents the comparison of a successful
model that proved its value through a previous RCT, versus a new
model. The horizontal coordinate is given by the relative difference
between the new model and the current baseline according to an
offline estimation of the performance of the models. This data is
only about classifiers and rankers, evaluated by ROCAUC andMean
Reciprocal Rank respectively. The vertical coordinate is given by
the relative difference in a business metric of interest as observed
in a RCT where both models are compared (all models aim for
the same business metric). We include a total of 23 comparisons
(46 models). Visual inspection already shows a lack of correlation,
deeper analysis shows that the Pearson correlation is -0.1 with 90%
confidence interval (-0.45, 0.27), and Spearman correlation is -0.18
with 90% confidence interval (-0.5, 0.19). We stress that this lack
of correlation is not between offline and online performance, but
between offline performance gain and business value gain. At the
same time we do not want to overstate the generality of this result,
the external validity can be easily challenged by noting that these
models work in a specific context, for a specific system, they are
built in specific ways, they all target the same business metric, and
furthermore they are all trying to improve it after a previous model
already did it. Nevertheless we still find the lack of correlation a
remarkable finding. In fact, such finding led us to investigate other
areas of Booking.com and consistently found the same pattern. For
example [8] highlights that the standard performance metric for
Machine Translation (BLEU) exhibits a “rather tenuous” correlation
with human metrics. Only where the offline metric is almost exactly
the business metric, a correlation can be observed.

This phenomenon can be explained by different factors, we list
the ones we found most relevant to share:

• Value Performance Saturation: It is clear that there are busi-
ness problems for which it is not possible to drive value
from model performance gains indefinitely, at some point
the value vs performance curve saturates, and gains in perfor-
mance produce no value gain, or too small gains, impossible
to detect in an RCT in reasonable time.

• Segment Saturation: when testing a new model against a
baseline we apply triggered analysis to make sure we only
consider the users exposed to a change, that is, users for
which the models disagree. As models improve on each other,
this disagreement rate goes down, reducing the population
of users that are actually exposed to a treatment, and with
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that, the power to detect gains in value. More details about
how we test competing models can be found in Section 7.4.

• Uncanny Valley effect: as models become better and better,
they seem to know more and more about our users, or can
predict very well what the user is about to do. This can be
unsettling for some of our customers (see Figure 5 and [10]),
which likely translates to a negative effect on value.

• Proxy Over-optimization: Usually, our Machine Learned mod-
els are supervised models that maximize certain observed
variable, but not necessarily the specific objective business
metric. For example, we might build a recommender system
based on Click Through Rate because we know that CTR
has a strong correlation or even causation with Conversion
Rate, the business metric we really care about in this case.
But as models get better and better, they might end up “just
driving clicks”, without any actual effect on conversion. An
example of this is a model that learned to recommend very
similar hotels to the one a user is looking at, encouraging
the user to click (presumably to compare all the very similar
hotels), eventually drowning them into the paradox of choice
and hurting conversion. In general, over-optimizing proxies
leads to distracting the user away from their goal.

It is challenging to address each of this issues on its own. Our
approach relies on a fast cycle of developing hypotheses, building
minimum models to test them in experiments, and using the results
to keep iterating. Offline model performance metrics are only a
health check, to make sure the algorithm does what we want to.
This cycle drives us to focus on many aspects of the product devel-
opment process besides the offline model performance, multiplying
the iterative process along many dimensions. These include the
Problem Construction Process described in the following section,
qualitative aspects of a model (like diversity, transparency, adapt-
ability, etc.), experiment design and latency. As an example consider
a recommender system that predicts the rating a user would give
to an accommodation. Minimizing RMSE looks like a reasonable
approach. After a few successful iterations we hypothesize that the
model is lacking diversity, so we create a challenger model that
although still minimizes RMSE, somehow produces higher diversity.
It is likely that this new model has a higher RMSE, but as long as it
succeeds at increasing diversity and gives a reasonable RMSE, it will
be used to test the hypothesis “diversity matters”. Inconclusive re-
sults might point to adjustments of the model or experiment design,
to make sure we give the hypothesis a fair chance. Negative results
will likely reject the concept. Positive results on the other hand,
will encourage diversity related changes, not only in the model but
also in the User Interface, and even the product as a whole.

4 MODELING: BEFORE SOLVING A PROBLEM,
DESIGN IT

The Modeling phase involves building a Machine Learning model
that can contribute in solving the business case at hand. A basic
first step is to “set up” a Machine Learning Problem, and we learned
that focusing on this step is key. The Problem Construction Process
takes as input a business case or concept and outputs a well defined
modeling problem (usually a supervised machine learning problem),
such that a good solution effectively models the given business case

Figure 4: Relative difference in a business metric vs relative perfor-
mance difference between a baseline model and a new one.

Figure 5: Uncanny valley: People not always react positively to accu-
rate predictions (destination recommender using Markov chains).

or concept. The point(s) at which the prediction needs to be made
are often given, which fixes the feature space universe, yet the
target variable and the observation space are not always given and
they need to be carefully constructed. As an example, consider
the Dates Flexibility model mentioned before, where we want to
know the dates flexibility of the users every time a search request
is submitted. It is not obvious what flexibility means: does it mean
that a user is considering more alternative dates than a typical user?
or that the dates they will end up booking are different to the ones
they are looking at right now?; or maybe it means that a visitor
is willing to change dates but only for a much better deal, etc. For
each of these definitions of flexibility a different learning setup can
be used. For example, we could learn to predict how many different
dates the user will consider applying regression to a specific dataset
composed by users as observations, or to estimate the probability
of changing dates by solving a classification problem, where the
observations are searches, and so on. These are all constructed
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machine learning problems, that, when solved, output a model of
the Dates Flexibility of a user.

To compare alternative problems we follow simple heuristics,
that consider among others, the following aspects:

• Learning Difficulty: when modeling these very subjective
concepts, target variables are not given as ground truth,
they are constructed. Therefore, some setups are harder than
others from a learning perspective. Quantifying learnability
is not straightforward. For classification problems the Bayes
Error is a good estimate since it only depends on the data
set, we apply methods from the work of Tumer & Ghosh
[12]. Another popular approach that works well for ranking
problems is to compare the performance of simple models
against trivial baselines like random and popularity. Setups
where simple models can do significantly better than trivial
models are preferred.

• Data to Concept Match: some setups use data that is closer
to the concept we want to model. For example, for the Dates
Flexibility case we could create a data set asking users them-
selves if they know the dates they want to travel on, and then
build a model to predict the answer. This would give a very
straightforward classification problem, that, compared to the
other options, sits much closer to the idea of Dates Flexibil-
ity. On the other hand, the data would suffer from severe
selection Bias since labels are only available for respondents.

• Selection Bias: As just described, constructing label and ob-
servation spaces can easily introduce selection bias. An un-
biased problem would be based on observations that map 1
to 1 to predictions made when serving, but this is not always
possible or optimal. Diagnosing selection bias is straightfor-
ward: consider a sample of the natural observation space
(users or sessions in the dates flexibility case), we can then
construct a classification problem that classifies each obser-
vation into the class of the observations for which a target
variable can be computed and the class of the observations
for which a target variable cannot be computed. If this classi-
fication problem is easy (in the sense that a simple algorithm
performs significantly better than random) then the bias
is severe and must be addressed. Correcting for this type
of bias is not obvious. Techniques like Inverse Propensity
Weighting [11] and Doubly Robust [4] are helpful in some
cases, but they require at least one extra model to build (the
propensity model). Other approaches that have been applied
successfully but not systematically are methods from the
PU-Learning [9] and Semi Supervised Learning fields.

The Problem Construction process opens an iteration dimension.
For a given business case and a chosen problem setup, improving
the model is the most obvious way of generating value, but we can
also change the setup itself. A simple example is a regression pre-
dicting the length of a stay, turned in to a multiclass classification
problem; and a more involved example is a user preferences model
based on click data switched to a Natural Language Processing
problem on guest review data. Figure 3 shows a more concrete
example. There are 6 successful algorithm iterations and 4 different
setups: Pr(Last Minute) classifies users into Last Minute or not,

Pr(Booking) is a conversion model, Pr(Overlap) models the proba-
bility of a user making 2 reservations with overlapping stay dates
and Unsupervised Similarity models the similarity of destinations.

In general we found that often the best problem is not the one
that comes to mind immediately and that changing the set up is a
very effective way to unlock value.

5 DEPLOYMENT: TIME IS MONEY
In the context of Information Retrieval and Recommender Systems,
it is well known that high latency has a negative impact on user
behavior [1]. We quantified the business impact that latency has
in our platform by running a multiple-armed RCT where users
assigned to each arm were exposed to synthetic latency. Results
are depicted in Figure 6 (bottom right quadrant). Each point is one
arm of the experiment, the horizontal coordinate is the relative
difference in observed (mean) latency between the arm and the
control group, and the vertical coordinate is the relative difference
in conversion rate. Crosses correspond to arms that did not show
statistical significance and circles to arms that did. This is a single
experiment with 4 arms (plus a control group), so we use Šidák
correction to account for multiple testing. Visual inspection shows a
clear trend, in which an increase of about 30% in latency costs more
than 0.5% in conversion rate (a relevant cost for our business). This
finding led us to hypothesize that decreasing latency can produce
a gain in conversion. On the top left quadrant of Figure 6 we can
see the effect of decreasing the latency, in 4 individual experiments
in different devices and different pages of the site. All results are
statistically significant, supporting the hypothesis.

This is particularly relevant for machine learned models since
they require significant computational resources when making pre-
dictions. Even mathematically simple models have the potential of
introducing relevant latency. A linear model, for example, might
require to compute many (hundreds of thousands), and complicated
features, or require to be evaluated on thousands of accommoda-
tions. Many pages in our site contain several Machine Learned
models, some of them computed at the user level, others at the item
level (destination, accommodation, attraction, etc.) or even at UI
widget level. Even if each model is fast enough, the overall effect
must be considered carefully.

To minimize the latency introduced by our models we use several
techniques:

• Model Redundancy: Copies of our models are distributed
across a cluster to make sure we can respond to as many
predictions as requested, scale horizontally and deal with
large traffic.

• In-house developed Linear Prediction engine: We developed
our own implementation of linear predictions, highly tuned
to minimize prediction time. It can serve all models reducible
to inner products, such as Naive Bayes, Generalized Linear
Models, k-NN with cosine or euclidean distance, Matrix Fac-
torization models and more.

• Sparse models: The less parameters a model has, the less
computation is needed at prediction time.

• Precomputation and caching: When the feature space is small
we can simply store all predictions in a distributed key-value
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Figure 6: Impact of latency on conversion rate

store. When the feature space is too big we can still cache
frequent requests in memory.

• Bulking: Some products require many requests per predic-
tion. To minimize network load, we bulk them together in
one single request.

• Minimum Feature Transformations: Sometimes features re-
quire transformations that introduce more computation, for
example, we might cluster destinations geographically, and
then learn parameters of a linear model for each cluster. At
prediction time one could compute the cluster given the des-
tination, and then invoke the model. We save one step by just
expressing the model in terms of the destination, mapping
the weight of a cluster to all the cities in it.

Most of these techniques are implemented by ourMachine Learn-
ing Production service, which provides a simple interface to deploy
and consume models in a variety of formats. This service abstracts
away many challenging aspects of model deployment, including
prediction latency, but also high availability, fault tolerance, moni-
toring, etc. Although these techniques are usually very successful
at achieving low latency on an individual model level, there could
always be the case where adding a fast model is “the last straw”
that breaks our system. To detect this situation we use a method
described in detail in section 7.3. The idea is to disentangle the
effects of latency and the model itself on the business metric, so
that we can decide whether there is a need to improve the latency
or the model itself in one single RCT.

6 MONITORING: UNSUPERVISED RED FLAGS
When models are serving requests, it is crucial to monitor the
quality of their output but this poses at least two challenges:

Incomplete feedback: In many situations true labels cannot be
observed. For example, consider a model that predicts whether a
customer will ask for a “special request”. Its predictions are used
while the user shops (search results page and hotel page), but we
can only assign a true label to predictions that were made for users
that actually booked, since it is at booking time when the special
request can be filled in. Predictions that were made for users that
did not book, will not have an associated true label.

Figure 7: Examples of Response Distribution Charts

Delayed feedback: In other cases the true label is only observed
many days or even weeks after the prediction is made. Consider a
model that predicts whether a user will submit a review or not. We
might make use of this model at shopping time, but the true label
will be only observed after the guest completes the stay, which can
be months later.

Therefore, in these situations, label-dependent metrics like pre-
cision, recall, etc, are inappropriate, which led us to the following
question: what can we say about the quality of a model by just
looking at the predictions it makes when serving? To answer this
question for the case of binary classifiers we apply what we call Re-
sponse Distribution Analysis, which is a set of heuristics that point
to potential pathologies in the model. The method is based on the
Response Distribution Chart (RDC), which is simply a histogram
of the output of the model. The simple observation that the RDC of
an ideal model should have one peak at 0 and one peak at 1 (with
heights given by the class proportion) allows us to characterize
typical patterns that signal potential issues in the model, a few
examples are:

• A smooth unimodal distribution with a central mode might
indicate high bias in the model or high Bayes error in the
data

• An extreme, high frequency mode might indicate defects in
the feature layer like wrong scaling or false outliers in the
training data

• Non-smooth, very noisy distributions point to too exces-
sively sparse models

• Difference in distributions between training and serving data
may indicate concept drift, feature drift, bias in the training
set, or other forms of training-serving skew.

• Smooth bimodal distributions with one clear stable point are
signs of a model that successfully distinguishes two classes

Figure 7 illustrate these heuristics. The rationale behind these
heuristic is that if a model cannot assign different scores to different
classes then it is most likely failing at discriminating one from
another, small changes in the score should not change the predicted
class. It is not important where the stable point is (which could
indicate calibration problems), it only matters that there is one,
since the goal is to clearly separate two classes, one that will receive
a treatment and one that will not. These are the advantages this
method offers:

• It can be applied to any scoring classifier
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• It is robust to class distribution. In extreme cases, the loga-
rithm of the frequency in the RDC is used to make the cues
more obvious

• It addresses the Incomplete Feedback issue providing Global
Feedback since the RDC is computed considering all predic-
tions

• It addresses the Delayed Feedback issue providing Immediate
Feedback, since the RDC can be constructed as soon as a few
predictions are made

• It is sensitive to both class distribution and feature space
changes, since it requires very few data points to be con-
structed

• It can be used for multi-class classification when the number
of classes is small by just constructing one binary classifier
per class that discriminates between one class and the others
(one vs all or one vs rest)

• It offers a label-free criterion to choose a threshold for turn-
ing a score into a binary output. The criterion is to simply use
a minimum of the RDC in between the 2 class-representative
modes. If the region is large, then one can choose to maxi-
mize recall or precision using the lower and upper bound of
that region respectively. This is very useful when the same
model is used in various points of the system like hotel page
or search results page, since they have different populations
with different class distributions.

The main drawbacks are:

• It is a heuristic method, it cannot prove or disprove a model
has high quality

• It does not work for estimators or rankers

In practice, Response Distribution Analysis has proven to be a
very useful tool that allows us to detect defects in the models very
early.

7 EVALUATION: EXPERIMENT DESIGN
SOPHISTICATION PAYS OFF

Experimentation through Randomized Controlled Trials is ingrained
into Booking.com culture. We have built our own experimentation
platform which democratizes experimentation, enabling everybody
to run experiments to test hypotheses and assess the impact of our
ideas [6]. Machine Learning products are also tested through exper-
iments. The large majority of the successful use cases of machine
learning studied in this work have been enabled by sophisticated
experiment designs, either to guide the development process or in
order to detect their impact. In this section we show examples of
how we use a combination of triggered analysis with treatments
design to isolate the causal effect of specific modeling and imple-
mentation choices on business metrics.

7.1 Selective triggering
In a standard RCT, the population is divided into control and treat-
ment groups, all subjects in the treatment group are exposed to
the change, and all subjects in the control group are exposed to no
change. However, in many cases, not all subjects are eligible to be
treated, and the eligibility criteria are unknown at assignment time.
In the case of machine learning models, this is often the case since

Figure 8: Experiment design for selective triggering.

Figure 9: Experiment design formodel-output dependent triggering
and control for performance impact.

Figure 10: Experiment design for comparing models.

models may require specific features to be available. The subjects
assigned to a group but not treated add noise to the sample, diluting
the observed effect, reducing statistical power and inflating the
False Discovery Rate. To deal with this situation, we apply Trig-
gered Analysis [3], where only the treatable (or triggered) subjects
in both groups are analyzed. Figure 8 illustrates this setup.

7.2 Model-output dependent triggering
Even when all the model requirements are met, the treatment crite-
ria might depend on the model output. This happens for instance
when we show a block with alternative destinations only to users
identified as destination-flexible by the model. It may also be the
case that subsequent steps fail or succeed depending on the model
output, like fetching relevant items which may not be available.
In such cases, some users are not exposed to any treatment, once
more diluting the observed effect. Nevertheless, the setup of Fig-
ure 8 cannot be used since in the control group the output of the
model is not known and therefore cannot condition the triggering.
Modifying the control group to call the model is not advised, since
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we also use this group as a safety net to detect problems with the
experiment setup, and in such cases all the traffic can be directed
to the control group while studying the issue. The setup for model
output dependent triggering requires an experiment with 3 groups
as shown on Figure 9. The control groupC is exposed to no change
at all, the two treatment groups T1 and T2 invoke the model and
check the triggering criteria (e.g. output > 0) but only in T1 trig-
gered users are exposed to a change. InT 2 users are not exposed to
any change regardless of the model output. The statistical analysis
is conducted using only triggered subjects from both T 1 and T 2.

7.3 Controlling performance impact
The setup described in the previous section serves also as a way
to disentangle the causal effect of the functionality on the user
experience - for instance, new recommendations - from that of any
slow down due to model computation. A comparison of metrics be-
tweenC andT 1measures the overall effect of the new functionality,
including any performance degradation. A positive result endorses
the current implementation. Otherwise, we can still learn from
two more comparisons. With C and T 2 we can isolate and measure
both the slowdown and its impact on the metrics of interest, since
there is no change on the functionality between these variants.
Conversely, T1 and T2 share the same computational load due to
model invocation and are only different on the exposure to the
new functionality, allowing to measure its effect regardless of the
computational cost associated to the model. A positive result in this
last comparison supports the new functionality, independently of
the effect of the model on latency. More details on this topic can be
found in [7].

7.4 Comparing Models
When comparing treatments based on models which improve on
one another, there are often high correlations. As a toy example,
consider a binary classification problem and consider model x , a
successful solution with 80% accuracy. Model y improves on this
result by correcting half of the mistakes of model x , while introduc-
ing only 5% new mistakes. These two models disagree only on at
most 15% of the cases. For the other (at least) 85% of the cases, being
on control or treatment does not result on a different experience,
differences in metrics cannot be caused by difference in the model
outputs, and therefore this traffic only adds noise. Figure 10 shows
the setup for this situation, which is very similar to the previous
one. In this case the triggering condition is models disagree, which
means that the outputs from both models are required inT 1 andT 2.
The control group invokes and uses the output from model 1, the
current baseline, and also works as a safety net. As an additional
gain, both T1 and T2 perform the same model associated compu-
tations, removing any difference due to performance between the
models, isolating the causal effect of the difference between the
model outputs on the target metric.

8 CONCLUSION
In this work we shared 6 lessons we have learned while developing
150 successful applications of Machine Learning in a large scale e-
commerce. We covered all the phases of a Machine Learning project
from the perspective of commercial impact delivery. All our lessons

are about improving the hypothesis-model-experiment cycle: the
semantic layer and model families help us to initiate as many cycles
as possible; the finding that offline metrics are poorly correlated to
business gains led us to focus on other aspects, like for example,
Problem Construction, which adds a very rich iteration dimension;
the finding that latency has commercial value led us to implement
methods to keep it low giving each model the best chance to be
impactful, and led to experiment design techniques to isolate its
effects on business metrics; Response Distribution Analysis im-
proved our ability to detect model issues right after deployed; and
finally, experiment sophistication improved the iteration cycle by
giving fast, reliable and fine-grained estimations of the effect of our
choices and the validity of our hypotheses. In order to turn these
lessons into actions we integrated ideas from various disciplines
like Product Development, User Experience, Computer Science,
Software Engineering, Causal Inference among others. Hypothe-
sis driven iteration and interdisciplinary integration are the core
of our approach to deliver value with Machine Learning, and we
wish this work can serve as a guidance to other Machine Learning
practitioners and sparkle further investigations on the topic.
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