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Abstract

Effective long-term strategies enable Al systems to navigate complex environments
by making sequential decisions over extended horizons. Similarly, reinforcement learn-
ing (RL) agents optimize decisions across sequences to maximize rewards, even without
immediate feedback. To verify that Latent Diffusion-Constrained Q-learning (LDCQ),
a prominent diffusion-based offline RL method, demonstrates strong reasoning abilities
in multi-step decision-making, I aimed to evaluate its performance on the Abstraction
and Reasoning Corpus (ARC). However, applying offline RL methodologies to enhance
strategic reasoning in Al for solving tasks in ARC is challenging due to the lack of suf-
ficient experience data in the ARC training set. To address this limitation, I introduce
an augmented offline RL dataset for ARC, called Synthesized Offline Learning Data
for Abstraction and Reasoning (SOLAR), along with the SOLAR-Generator, which
generates diverse trajectory data based on predefined rules. SOLAR enables the ap-
plication of offline RL methods by offering sufficient experience data. I synthesized
SOLAR for a simple task and used it to train an agent with the LDCQ method. Our
experiments demonstrate the effectiveness of the offline RL approach on a simple ARC
task, showing the agent’s ability to make multi-step sequential decisions and correctly
identify answer states. These results highlight the potential of the offline RL approach

to enhance Al’s strategic reasoning capabilities.

@2024
Yunho Kim
ALL RIGHTS RESERVED
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Chapter 1

Introduction

Effective long-term strategies involve deliberate reasoning, which refers to the thought-
ful evaluation of options to determine the best course of action [1]. This type of rea-
soning requires conscious effort and allows intelligent beings to systematically plan and
execute multi-step strategies to achieve complex long-term goals. Similarly, reinforce-
ment learning (RL) agents make decisions with the goal of maximizing rewards over
extended sequences of actions, even without immediate feedback. In both cases, reason-
ing involves considering a sequence of actions to reach an optimal outcome. The way
Q-values guide an RL agent toward desired outcomes can be seen as aligning with the
subgoals of deliberate reasoning, particularly in terms of multi-step decision-making to
achieve long-term objectives.

Recent approaches to offline RL combined with generative diffusion models have
shown significant improvements in multi-step strategic decision-making abilities for
future outcomes [2, 3, 4, 5]. In particular, Latent Diffusion-Constrained Q-learning
(LDCQ) [6] leverages diffusion models to sample various latents that compress multi-
step trajectories. These latents are then used to guide the Q-learning process. By
generating diverse data based on in-distribution samples, diffusion models help over-
come the limitations of fixed datasets. This integration of diffusion models into offline
RL enhances agents’ reasoning abilities, allowing them to consider multiple plausible
trajectories across extended sequences.

This research aims to apply the offline RL method to tackle reasoning benchmarks
that demand advanced reasoning capabilities. To this end, we chose the Abstraction
and Reasoning Corpus (ARC) [7], one of the key benchmarks for measuring abstract
reasoning ability in Al. As shown in Figure 1.1, the ARC training set consists of 400

grid-based tasks, each requiring the identification of common rules from the demon-



stration examples, which are then applied to solve the test examples. ARC tasks are
particularly challenging for Al models because they require high-level reasoning abili-
ties, integrating core knowledge priors such as objectness, basic geometry, and topol-
ogy [7]. These core knowledge priors guide the decision-making process for selecting the
appropriate actions. Therefore, I believe that agents trained with offline RL methods
can leverage these core knowledge priors by learning from experienced data.

However, the existing ARC training dataset lacks sufficient trajectories to train
agents with offline RL methods. To address this limitation, this research proposes
Synthesized Offline Learning data for Abstraction and Reasoning (SOLAR), a dataset
for training offline RL agents. SOLAR provides diverse trajectory data, allowing the
agent to encounter various actions shaped by the core knowledge priors across different
episodes. In this research, I generated SOLAR for a simple task using the SOLAR-
Generator, which was then used to train agents with the LDCQ method.

This research attempts to apply offline RL methods to solving ARC tasks. Training
with LDCQ on SOLAR enabled agents to devise pathways to correct answer states, in-
cluding solution paths not present in the training data. This demonstrates the potential
of diffusion-based offline RL to enhance AI’s reasoning capabilities.

Task 1 Task 2 Task 3

l. il*ll *n
Demonstration mI.II
Examples .IlII - l _y

H_n I
Ex-gen;tole l._’ ? = ?
= n

Figure 1.1: Three tasks in ARC. Each task consists of demonstration examples and
a test example. Each example has an input grid and an output answer grid. Each
pixel in the grid is matched to a color corresponding to a value in the range 0-9. ARC
requires identifying common rules from the demonstration examples and applying them
to solve the test example correctly. Despite recent advancements in Al, current models
have consistently underperformed compared to humans on the ARC benchmark [8, 9].



Chapter 2

Preliminaries

2.1 ARC Learning Environment (ARCLE)

state s, action a, state s,,,
| | ||
H N B E H B L]
operation ARCLE
. . step . .
input grid grid clip [3 02 2] input grid grid clip
episode information selection episode information
reward 0 terminated False [xy.hw] reward 0 terminated False

Figure 2.1: An example of a single step in ARCLE. In this example step, the action
has an operation 30 (Paste) and a selection of [3,0, 2, 2]. The top-left coordinate of the
selection box is [3,0] and the bottom-right coordinate is [5,2]. [hs, wy] is calculated by
subtracting [3, 0] from [5, 2]. When ARCLE executes this action, the current clipboard
is pasted into the bounding box specified by the selection on the current grid. It then
returns episode information, including the reward and termination status.

ARCLE [10] is a Gymnasium-based environment developed to facilitate RL ap-
proaches for solving ARC tasks. ARCLE frames ARC tasks within a Markov Decision
Process (MDP) structure, providing an environment where agents can interact with
and manipulate grid-based tasks. This MDP structure enables ARC tasks to be solved
through sequential decision-making.

ARCLE handles states and actions following the O2ARC web interface [11]. As
shown in Figure 2.1, when ARCLE executes an action a; on the current state s,
it returns the next state s;,;, along with episode information about the reward and
termination status. A state s; consists of (input grid, grid,, clipboard,) at timestep t.
The input grid represents the initial state of the test example, the grid, denotes the
current grid at time ¢ after several actions have been applied, and the clipboard, stores

the copied grid by the Copy operation. An action a; consists of (operation,, ¢, y;, by, wy),
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where operation, represents the type of transformation, x; and y; denote the coordinates
of the top-left point of the selection box, and h; and w; represent the difference between
the bottom-right and top-left coordinates. All subsequent notations for s; and a, will
adhere to this definition for clarity. Reward is only given when the Submit operation
is executed at the answer state, and the episode terminates either after receiving the
reward or when Submit is executed across multiple trials. All possible operations are

mentioned in Appendix B.1.

2.2 Diffusion-Based Offline Reinforcement Learning

Offline RL focuses on learning policies from previously collected data, without in-
teracting with the environment. However, Offline RL faces challenges, including data
distribution shifts, limited diversity in the collected data, and the risk of overfitting to
biased or insufficiently representative samples. To address these issues, several works
in offline RL have focused on improving learning efficiency with large datasets and
enhancing generalization to unseen scenarios while balancing diversity and ensuring
data quality [12, 13, 14].

Recent offline RL methods offer promising solutions in long-horizon tasks and han-
dling out-of-support samples through diffusion models. For instance, Diffuser [2] gen-
erates tailored trajectories by learning trajectory distributions, reducing compounding
errors. Beyond this, a range of advanced diffusion-based offline RL approaches, such
as Decision Diffuser (DD) [3], AdaptDiffuser [4], HDMI [5] have demonstrated the

effectiveness of combining diffusion models with offline RL.



Chapter 3
LDCQ for ARC

Latent Diffusion-Constrained Q-learning (LDCQ) [6] combines latent diffusion and
batch-constrained Q-learning to address long-horizon tasks with sparse rewards. By
using sampled latents that encode H-length trajectories, LDCQ reduces extrapolation
errors and enhances decision-making in multi-step tasks. The training process of LDCQ
is shown in Figure 3.1: 1) training the -VAE to learn latent representations, 2) training
the diffusion model using the latent vectors encoded by the 5-VAE, and 3) training the

Q-network with latents sampled from the diffusion model.

St+h St
Segment xT times Noised
Trajectory L [ v
st:t+H _>
Encoder —» Z: —» Decoder—» a;,;, N Forward Process
Ay P t Diffusion Model
(a) Training -VAE (b) Training Diffusion Model
> xT times Denoised Candidate Max Q S
i " Latents Latents Latent l

DDPM Sampling

. —» Q-Net Decoder
> with Diffusion Model > z, —» Q-Net Z S R > A

(c) Training Q-Network (d) Inference step

Figure 3.1: (a)—(c) Training stages of LDCQ. (a) Training a 5-VAE with an encoder
that encodes H-horizon segment trajectories into latents z;, and a policy decoder that
decodes actions based on z; and state s;,, where h € [0, H) contained in the latent.
(b) Training a diffusion model based on z; and the s;. (¢) Training a Q-network using
latents sampled through the diffusion model. (d) LDCQ inference step at ;.. Possible
latents at s; are sampled through the diffusion model, and the agent executes actions
resulting from decoding the latent with the highest Q-value.



3.1 Training Latent Encoder and Policy Decoder

The first stage of LDCQ training is to train a §-VAE that learns latent represen-
tations. In this stage, § -VAE learns how actions are executed over multiple steps to
change the state. With H-horizon latents, it becomes easier to capture longer-term
changes in the state. I use SOLAR as the training dataset D, which contains H-length
segmented trajectories T,. Each 1; consists of state sequences Sy = [S¢, St41y -y St H-1)
and action sequences Qi py = [@4, Qyy1, ..., Qi g—1], along with additional informa-
tion such as demonstration examples. The state, as described in Section 2.1, consists
of the test example represented as (input grid, grid,, clipboard,). Each grid is passed
through a layer to generate embeddings, which are then concatenated to form the
state representation. Similarly, the action, as described in Section 2.1, is composed of
(operation,, z, yi, hy, wy), and each component is decoded individually by the policy
decoder. The loss for action decoding is calculated as the sum of the losses for each
component. The latent encoded by the 5-VAE contains information about the ARC
task’s demonstration example, the test example input, the current state, and the action
performed.

As shown in Figure 3.1a, during the 3-VAE training stage, the encoder g, is trained
to encode 7 into the latent representation z;, and the low-level policy decoder 7y is
trained to decode actions based on the given state and latent. For example, given the
latent z; and a state from the segment trajectory, s, where h € [0, H), the policy
decoder decodes the action a;,, for s;y,. The B-VAE is trained by maximizing the
evidence lower bound (ELBO), minimizing the loss in Eq. 3.1. The loss consists of the
reconstruction loss from the low-level policy decoder and the KL divergence between

the approximate posterior g4(z;|7;) and the prior p,(z:|s:).

t+H—1

Egy(zelm) l Z logw@(al|sl,zt)] — BDrr(as(zil ) | pu(zidse)) | (3.1)

I=t

EVAE(Gy ¢, w) =-E.p




3.2 Training Latent Diffusion Model

In the second stage, the latent diffusion model is trained to generate latents based
on the latent representations encoded by  -VAE. The training data consists of (s;, z;)
pairs, which are used to train a conditional latent diffusion model py(2:|s;) by learning
the denoising function i, (27, 81, j), where j € [0, T] is diffusion timestep. This allows
the model to capture the distribution of trajectory latents conditioned on s,. q(z!|2?)
denotes the forward Gaussian diffusion process that noising the original data. Following
previous research [15, 6], the diffusion model is trained to predict the original latent
rather than the noise, balancing the loss over diffusion time steps using the Min-SNR-~
strategy [16]. The loss function used to train the diffusion model is shown in Eq. 3.2.
Here, zZ , j € [0,T] represents noised latent on j-th diffusion time step, when j = 0

then z? = z; and 2! is Gaussian noise.

£('¢) - ij[l,T],THND,thQ¢(zt|Tt),z{NQ(zg‘z?) [HHIl{SNR(]), ’y}HZ? - 'U“/f(zga St7j)||2} (32>

With the trained diffusion model, diverse latents encapsulating candidate trajec-
tories conditioned on the current state s; can be sampled. These latents resemble
trajectories in the training data while offering flexibility to generate plausible alterna-
tives, allowing the model to generalize and evaluate multiple options before selecting
an action. This enhances decision-making in unseen scenarios and is particularly ben-
eficial for tasks with sparse rewards or ambiguous intermediate states, where diverse

trajectories significantly improve reasoning capabilities.

3.3 Training Q-Network

Finally, the latent vectors sampled by the latent diffusion model are used for Q-
learning. For sampling latents, I use the DDPM method [17]. The trained diffusion
model samples latents by denoising random noise using the starting state informa-

tion s;. A set of (s, 24, "arm, Serp) is used for training Q-Network, where rp g =



t+H—1

" ~'r; denotes the discounted sum of rewards. Here, DDPM sampling is used to

sample z; g for s, g. For Q-learning, I use Clipped Double Q-learning [18] as shown
in Eq. 3.3 with Prioritized Experience Replay buffer [19] to improve learning stability
and mitigate overestimation. The trained Q-network Q(s;, z;) evaluates the expected
return of performing various H-length actions, with z; sampled via DDPM based on
s;. This allows the network to efficiently calculate the value of actions over H-steps to
estimate future returns. Furthermore, since ARC tasks involve inferring analogies from
demonstration pairs, the embedded representation of the demonstration pair, pe,np, is
also used in the calculation of the Q function. This approach aims to make the Q-
values vary depending on the demonstration pair embeddings, encouraging the agent

to consider the demonstration examples more effectively when selecting actions.

Q(St> Zt, pemb) — (rt:tJrH + ’.)/HQ(StJrHa argmax Q(8t+H7 z, pemb)7 pemb)) (33)

z~py (2t H|St+H)

The detailed hyperparameters used for training the model are described in Ap-
pendix A.



Chapter 4
Synthesized Offline Learning data for Ab-
straction and Reasoning (SOLAR)

This research introduces a new dataset, Synthesized Offline Learning Data for Abstrac-
tion and Reasoning (SOLAR), which can be used to train offline RL methods. Solving
ARC tasks can be considered a process of making multi-step decisions to transform the
input grid into the output answer grid. I believe that the process of making these deci-
sions inherently involves applying core knowledge priors, objectness, goal-directedness,
numbers and counting, and basic geometry and topology [7], which are necessary for
solving ARC tasks. The ARC training set lacks information on how to solve the task,
and it only provides a set of demonstration examples and a test example for each task,
as shown in Figure 1.1. To address this, I aim to provide the trajectory data to solve
the task through SOLAR, enabling them to learn how actions change the state based

on the application of core knowledge priors.

4.1 SOLAR Structure

SOLAR contains various transition data (s;, a;, s;11), where actions a, are taken
in different states s;, and the result s, observed. To facilitate effective learning and
a combination of core knowledge, I use ARCLE [10]. By designing a simple reward
system that only provides rewards upon reaching the correct solution, I can guide the
agent towards the desired state using reinforcement learning methods.

As shown in Figure 4.1, SOLAR consists of two key components: Demonstration
FExamples and Test Example with Trajectory. The demonstration examples and the test
examples serve the same roles as in ARC. Through the demonstration examples, the

common rule for transforming the input grid to the output grid is identified and then



applied to solve the test example. Trajectory data means the episode data that starts

from test input sq.

SOLAR-Generator

Demonstration Examples  Test Example Action Sequence
Loading Synthesized Data «——— So —» Sun. 8 *** A Grid Maker
v
Validating Trajectory %—a"\ St a step Iy St41 execuTe ranstton ARCLE
a\d% sanity check
L Demonstration Examples Test Example with Trajectory
Structuring SOLAR —_— So a, —> I, s, eer L8, SOLAR

Figure 4.1: Data synthesis procedure with SOLAR-Generator. The state and actions
consist of as mentioned in Section 2.1. 1) Loading Synthesized Data: The Grid Maker
module applies constraints, augments input-output pairs, and synthesizes solutions for
specific tasks by utilizing actions. 2) Validating Trajectories: Checks whether the gen-
erated actions are executable in ARCLE. 3) Structuring SOLAR: Organizes and stores
the synthesized data in SOLAR based on the defined format. This step determines
what information to include in the dataset and whether to segment episodes into fixed-
length chunks or store them as a whole.

4.2 SOLAR-Generator

To synthesize SOLAR, I introduce SOLAR-Generator, which provides a method for
generating diverse trajectory data. SOLAR-Generator augments ARC trajectories by
following ARCLE formalism, addressing the inherent complexity and diversity of ARC
tasks. Figure 4.1 illustrates the data synthesis procedure, which is carried out in three
steps: 1) Loading Synthesized Data, 2) Validating Trajectories with ARCLE, and 3)
Structuring SOLAR.

Loading Synthesized Data The first step in SOLAR-Generator is to load the syn-
thesized data for the target tasks. SOLAR provides the Grid Maker with common
parameters such as maximum grid size and the number of demonstration examples per
test example. Each task has its own specific Grid Maker, which synthesizes demon-

stration examples, test examples, and corresponding action sequences (selections and

— 10 —



operations) based on the task’s constraints and rules. If desired, non-optimal trajecto-
ries containing random actions can also be synthesized. At this stage, the Grid Maker
synthesizes only grid pairs and possible action sequences. The full trajectory data for
the test example is constructed after passing through ARCLE. More details about how
the Grid Maker synthesizes the input-output grids and action sequences are described

in Appendix B.

Validating Trajectories with ARCLE After synthesizing various grids and action
sequences with the Grid Maker, SOLAR-Generator checks whether the action sequences
are valid in ARCLE. The Grid Maker serves as a data loader, enabling it to load and
validate the synthesized data. Through this process, ARCLE provides intermediate
states, rewards, and termination status for each step, and verifies that each action is
correctly executed in the current state. This step is particularly important for non-
optimal trajectories, where operations and selections may be generated randomly, as
invalid selections can sometimes be synthesized by the Grid Maker. For gold standard
trajectories, intended as correct solutions, SOLAR-Generator ensures that the final grid
of the trajectory matches the expected output grid of the test example. As a result,
this stage is useful for checking and debugging the synthesized trajectories, preventing

unintended errors.

Structuring SOLAR After the trajectory validation is complete, the episodes are
saved into SOLAR. In this step, user can determine the necessary information to include
in SOLAR. At its core, SOLAR includes episodes consisting of state, action, reward,
and termination information at each step, which are essential for training with offline
RL methods. In addition to the previously mentioned information, SOLAR can also
store various data from ARCLE, such as grid sizes at each step, binary mask versions
of selections, and other relevant information needed for different learning methods. In
this research, I designed the data to work with methods like LDCQ, which require
trajectories of fixed horizon length H. Therefore, the trajectories are segmented into

fixed-length chunks with a horizon length of H.
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Through these three steps, SOLAR-Generator synthesizes diverse solutions by al-
tering action orders or using alternative operation combinations. This is achieved by
the Grid Maker, which generates data using pre-implemented algorithms, enabling the
user to create as many trajectories as needed. SOLAR provides a sufficient training set
for learning various problem-solving strategies. By offering diverse trajectories while
adhering to the task-solving criteria, SOLAR bridges the gap between ARC’s reasoning
challenges and the sequential decision-making process of offline RL. For additional de-

tails about SOLAR and SOLAR-Generator, see the project website! and Appendix B.

'https://github.com/GIST-DSLab/SOLAR-Generator
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Chapter 5
Design SOLAR for a Simple Task

One of the most crucial factors in solving ARC tasks is the ability to recognize whether
the current state is the answer state and to submit the correct answer accordingly. In
ARC, each task embodies a single analogy, but this analogy can be approached through
various action sequences [9, 20]. Some solution paths may better exemplify the under-
lying analogy, while others might be less optimal or clear [20]. Moreover, even when
solving different test examples within the same task where the same rule is applied, the
actual action sequence can vary depending on factors like the grid size or the arrange-
ment of elements in the input grid. The diversity in potential action sequences to solve
a single ARC task highlights the complexity of abstract reasoning and the importance
of identifying the core analogy. Therefore, an agent’s ability to judge that it has reached
an answer state implies that it has comprehended the underlying analogy and executed
the necessary ARCLE actions to arrive at the correct solution. This ability to recognize
the answer state is critical, as it demonstrates the agent’s understanding of the task’s
inherent logic and its capacity to apply appropriate problem-solving strategies. In AR-
CLE, the reward is given only when the agent predicts the Submit operation and the
submitted grid is the same as the answer grid. To evaluate whether an agent trained
with LDCQ can correctly identify and submit at the answer state—even when non-
optimal trajectories are included in the training dataset—I mixed in incorrect episodes
where the Submit operation is conducted in non-answer states.

Given these characteristics of ARC tasks, our experimental objectives are: 1) To
assess whether the model can reach the answer state when various non-optimal tra-
jectories are mixed with gold standard trajectories, and 2) To determine whether the
model can recognize the answer state and perform the Submit action appropriately.

By demonstrating the model’s ability to identify the answer state, I can infer that it

— 13 —



has internalized core knowledge priors and understands the high-level problem-solving
methods necessary for ARC tasks. I synthesized SOLAR for a simple task designed to

show these experimental objectives.

Target Task Non-Optimal Trajectory

Rand Random
EREEL) actions i
.. - :I action B 0 —> IH Su_br’mt rewoard
- <v Gold Standard Trajectory
Resize
FlipV
. u —>
HE
step 3

1 (irf i-l CopyO 1 Paste \ Submit reward
T HTEC /I
— I

. B step 0 step 1 step 2 step 4

Non-Optimal Trajectory

1 > ? R:;?:':n “ull Rmt]'dorn Submit
actions ubmi
/ E b e > I ) reward

1

Figure 5.1: SOLAR episodes for a simple task: The gold standard trajectory (episode)
contains the steps to solve the problem by using the core knowledge priors properly.
The non-optimal episodes branch off at a random step within the standard trajec-
tory, performing random operations such as Rotate, Flip, or Copy & Paste, and then
Submit after a certain number of steps.

A simple task was designed to require core knowledge priors such as objectness and
geometry. This task necessitates the ability to consider the input grid as an object
and then perform actions based on this object. I constrained the maximum grid size
to 10x10, and each episode includes three demonstration pairs. In creating SOLAR
for this task, I constructed the dataset to include both gold standard episodes—which
successfully reach the answer state and perform the Submit action—and non-optimal
episodes—which follow random paths that may or may not reach the answer state.
The inclusion of non-optimal trajectories was intended to evaluate whether the agent
can recognize the answer state and appropriately perform the Submit action, thereby
assessing its reasoning abilities rather than simply mimicking the actions in the dataset.
As shown in Figure 5.1, the gold standard episode for this task consists of 5 steps: 1)
ResizeGrid to make the grid two times longer vertically, 2) CopyQ to copy the upper
half of the current grid, as it matches the input grid, 3) Paste to apply it to the lower
half of the grid, 4) F1ipV to vertically flip the upper half of the current grid, and 5)

— 14 —



Submit, as it reaches the answer state.

In the non-optimal episodes, the trajectories initially follow the gold standard tra-
jectory but deviate at a random step to execute random actions for several steps.
I constrained the random operations to F1ipV (vertical flip), F1ipH (horizontal flip),
Rotate90 (counterclockwise rotation), Rotate270 (clockwise rotation), and Copy0 (up-
dating the clipboard with the selected area). For selection, it was constrained to either
two options (upper half or lower half of the current grid) or three options (upper
half, lower half, or the whole grid). Specifically, there are two options for Rotate90,
Rotate270, and Copy0, and three options for the others. When Copy0 is selected, the
subsequent Paste action is forced onto the other possible selection option. This simpli-
fied selection allows for focusing on assessing the Al’s decision-making by sequentially
combining operations.

Each non-optimal episode contains approximately ten steps to the end, allowing
the trajectory to include various actions in diverse states. For each problem pair, one
gold standard episode and nine non-optimal episodes were generated, totaling 5,000
episodes across 500 problem pairs. As a result, the training set was composed such
that approximately 10% of the total episodes included the Submit operation at the

answer state.
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Chapter 6

Experiments and Results

6.1 Evaluation Process using ARCLE

Inference Network
xT times Candidate Max Q
Latents Latent

]
v
.
i
[

DDPM Sampling

i o eer -Net z
—»> Degg’:‘f;rlzgon with Diffusion Model ™ 2 18 > Z —>Decoder=> &,
EEE n |
| - ]
L v ARCLE
- state s, action a, state s,,
| ]
. . ? Test Example . . T 3b4 . . T
— Submit
- E orwon ARCLE gy L
[ | . , , . step ; =l
i input grid  grid clip [0,0,5,5] input grid  grid clip
episode information salEsiEn episode information
reward 0  terminated False [x,y,h,w] reward 1 terminated True

Figure 6.1: Inference framework for solving ARC tasks. ARCLE loads the task from
the dataset and manages state information as well as the termination status of the
current evaluation episode. The inference network of LDCQ performs DDPM sampling
on the given state to extract candidate latents, then decodes the corresponding action
for max Q latent, and sends it to ARCLE. ARCLE executes the action and updates
the state information accordingly. This process alternates between ARCLE and the
inference network, continuing the inference until the episode ends.

After training the agent using LDCQ on the SOLAR dataset, an evaluation of its
performance was conducted. To evaluate the experiment, I synthesized an evaluation
SOLAR set with 100 test examples, each paired with three synthesized demonstration
examples. The evaluation SOLAR set was synthesized by the SOLAR-Generator using
the same tasks but with a random seed different from the one used for the training set.
To measure the effectiveness of decision-making using the Q-function, two accuracy

metrics are measured: 1) Whether the agent reaches the answer state, and 2) Whether
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it predicts the Submit operation at the answer state to receive a reward.

The evaluation process is carried out through ARCLE, which manages the prob-
lem and its corresponding solution from SOLAR. ARCLE handles state transitions,
performs actions, and verifies whether the submitted solution is correct. As depicted
in Figure 6.1, ARCLE interacts with the LDC(Q inference network by alternating the
exchange of s; and a, facilitating the decision-making process toward reaching the cor-
rect answer state. The latent z; represents a segment trajectory spanning from timestep
ttot+ H — 1, and is trained to accurately decode actions for any state within this
segment trajectory.

In the original LDCQ methodology, inference is performed by executing several
horizons using a single latent, followed by predicting the next latent. However, in the
task used for this research, which has a gold standard trajectory consisting of five steps,
it is possible to complete the task with just one latent sampling from the initial state.
While reaching the correct answer in this manner is not inherently problematic, one of
the primary goals of this research is to analyze whether the agent learns the knowledge
prior to how actions work across various states. Thus, instead of focusing solely on
solving the problem in as few steps as possible, only one action is conducted per latent.
With this, the results demonstrate that the agent can make far-sighted decisions to
reach the answer not just from the beginning to the end, but also through intermediate

steps.

6.2 Results

To demonstrate the strengths of the diffusion-based offline RL method guided by

Q-function, I compare three approaches:

e VAE prior (VAE): This method uses a latent sampled from the VAE state prior
Pw(2z¢]st). The VAE state prior is trained in -VAE training stage by calculating
the KL divergence between p,(z;|s;) and the posterior g,(2z¢|7:), aligning the

latent distribution with the trajectory starting from state s;.
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¢ Diffusion prior (DDPM): This method uses a latent sampled from the diffusion
model py(2z¢|s:) through the DDPM method [17]. The sampled latents closely
resemble the training data, with added variance during the denoising process.
This method is similar to behavior cloning in that it operates without guidance

from rewards or value functions.

e Max Q latent (LDCQ): This method selects a latent with the highest Q-value

from those sampled by the diffusion model, argmax, _, (.,s,) @(8t, %), to make a

z di,

decision at s;.

The evaluation of each approach was conducted five times for the evaluation SOLAR
set. The results, summarized in Figure 6.2a, show the success rates for: 1) Whether
the agent reaches the correct answer state and 2) Whether the agent executes Submit
operation in the answer state. When using the VAE prior, the agent reaches the correct
answer state in only about 10% of test episodes and submits the answer in just 1%.
With latents sampled using DDPM, about 10% of the answers are correctly submitted,
while the agent reaches the answer state approximately 37% of the time. When using
LDCQ, the agent reaches the answer state in over 90% of cases and successfully submits
the correct answer in about 77% of test episodes. These results demonstrate that the
Q-function enhances the agent’s ability to both reach the correct answer and recognize
when it has arrived at the answer state.

Figure 6.2b and Figure 6.2c highlight the different solving strategies exhibited by
the Q-function. When using the latent sampled with DDPM, the agent performs diverse
actions, occasionally reaching the goal by chance. In contrast, with the Q-function, the
agent consistently reaches the correct answer in every evaluation. In scenarios where the
input grid is vertically symmetrical, the agent even skips unnecessary operation F1ipV
and proceeds directly to Submit. Notably, the training dataset does not include any
trajectories where the F1ipV operation is skipped, even for symmetrical grids. With
the Q-function, the model recognizes that applying F1ipV does not alter the state.

Consequently, the Q-value for submitting at that state increases, prompting the agent

— 18 —



to choose the Submit operation. This demonstrates the reasoning ability of the agent

trained with LDCQ in solving ARC tasks, as recognizing when the correct answer state

has been reached is crucial.

100

Success Rate (%)

WzzZ2 Submit Answer
[ Reach Answer

36.8

ﬁﬁ%

76.6

(a) Test accuracy for three methods

DDPM

LDCQ

Resize Rotate Random
Grld actions Paste Submit q
rewar
o0 0 > > v

step 0 step 1 step 2 step 9 step 10

) Inference example with DDPM method

Resize
Grid CopyO Paste Submit
_> - _’ _’ reward
1

step 0 step 1 step 2 step 3

(c) Inference example with LDCQ method

Figure 6.2: (a) The evaluation results for 100 test examples. LDCQ shows significantly
improved performance compared to the other two methods, successfully reaching the
correct answer state and executing the Submit operation at the answer state. The error
bars represent the 96% confidence interval. (b) With the latent sampled with DDPM,
the agent sometimes reaches the correct answer after performing various actions. This
occurred rarely during evaluation, and even when it did, it did not appear in subsequent
evaluations. (¢) When using LDCQ), it often shows the case that skips unnecessary
actions. The inference example with the VAE prior method is omitted because it rarely

solves

the problem.
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Chapter 7

Limitations & Discussions

In our experiment, the LDCQ method showed significant improvement in reaching
the goal. However, in approximately 16% of cases, the agent reached the correct state
but proceeded with another action instead of submitting the solution, even with the
assistance of the Q-function. This issue arises because the Q-function, while enhancing
decision-making, sometimes assigns higher values to actions other than submission,
causing the agent to bypass the goal state. This suggests that the Q-function is not
perfectly aligned with the final objective in ARC. Notably, in ARC tasks, even when
solving different test examples within the same task where the same rule is applied, the
actual action sequence can vary depending on factors like grid size or the arrangement of
elements in the input grid. The current Q-values are calculated based on the absolute
state values, which occasionally leads to misjudgments when submitting the correct
solution. Therefore, improving the agent’s ability to accurately determine when to
submit the correct answer is necessary for future research.

While the LDCQ approach performs well in a simple ARC task setting, more com-
plex tasks and multi-task environments present additional challenges. Unlike single-task
scenarios, where the agent follows a fixed strategy toward a predefined answer, multi-
task settings demand flexibility to adapt to changing goals or new possibilities during
task execution. I expect that addressing these challenges could involve integrating task
classifiers for Q-learning. Additionally, incorporating modules so that the agent can re-
vise its strategy during task execution—adjusting based on evolving states or objectives
rather than rigidly following the initial strategy—may enhance its adaptability.

In traditional supervised RL approaches, such as those described by [21], stitching
typically occurs only when the goal remains consistent across tasks. To address this

limitation, I employed temporal data augmentation, which involves starting from an

— 920 —



intermediate state near the goal and setting a new target. In SOLAR, this could be
extended by using non-optimal paths as goals in non-optimal trajectories. However,
in ARC, where goals are determined by demonstration pairs, augmenting all goals is
impractical. More careful strategies are needed to enable stitching for entirely new goals
not previously encountered. If methodologies are developed that can combine existing
actions toward different goals, I expect that SOLAR will facilitate these combinations.

Going forward, refining how the Q-function evaluates states and actions will be
crucial. To improve performance, especially in multi-task environments, incorporating
mechanisms that not only assess the state and action in relation to the goal but also
guide the agent toward the most effective path to achieve the ultimate objective will
be beneficial. Recognizing the task’s context and how close states are to the correct
solution is essential for ensuring that the Q-function helps navigate toward the goal

efficiently.
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Chapter 8

Conclusion

This research demonstrates the potential of offline reinforcement learning (RL), par-
ticularly the Latent Diffusion-Constrained Q-learning (LDCQ) method, for efficiently
sequencing and organizing actions to solve tasks in grid-based environments like the
Abstraction and Reasoning Corpus (ARC). To our knowledge, this work is the first
to tackle ARC using a diffusion-based offline RL. model within a properly designed
environment, guiding agents step-by-step toward correct solutions without generating
the full ARC grid at once. Through training on SOLAR, I successfully applied and
evaluated offline RL methods, showing that agents can learn to find paths to the cor-
rect answer state and recognize when they’ve reached it. This suggests that RL with a
well-designed environment is promising for abductive reasoning problems, potentially
reducing data dependency compared to traditional methods. As tasks become more
complex, especially in multi-task settings, refining the Q-function to address unique
reward structures is crucial, with multi-task environments requiring task-specific adap-
tations to account for varying states and rewards. Integrating modules like task clas-
sifiers or object detectors could enhance the agent’s ability to dynamically adjust its
strategy, promoting more flexible decision-making. This research opens new avenues
for program synthesis in analogical reasoning tasks with RL environments, potentially
integrating with analogy findings techniques (hypothesis search with LLMs) to handle
a wider range of ARC tasks.
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Appendix A
Training detalils

A.1 Hyperparameters

I used a horizon length of 5 for encoding skill latents, allowing the model to plan
and evaluate actions over a five-step lookahead. The diffusion model was trained with
500 diffusion steps to minimize variance in the sampling process and ensure accurate
decoding of operations and selections in ARCLE. The discount factor was set to 0.5 to
balance immediate and future rewards, considering that ARCLE tasks typically require
fewer than 20 steps to reach the correct answer.

The hyperparameters used for training the three stages of LDCQ are summarized

in Tables A.1, A.2, and A.3.

Parameter Value
Learning rate oe-H
Batch size 128
Epochs 400
Horizon (H) 5

Latent dimension (z) 256
KL loss ratio (3) 0.1

Hidden layer dimension | 512

Table A.1: Hyperparameters for training 5-VAE
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Parameter Value
Learning rate le-4
Batch size 32
Epochs 400
Diffusion steps (T') 500
Drop probability 0.1
Variance schedule linear
Sampling algorithm DDPM
v (For Min-SNR~v weighing) 5

Table A.2: Hyperparameters for training latent diffusion model

Parameter Value
Learning rate He-4
Batch size 128
Discount factor () 0.5
Target net update rate (p) 0.995
PER buffer o 0.7
PER buffer 3 Linearly increased from 0.3 to 1,
grows by 0.03 every 2000 steps
Diffusion samples for batch argmax 100

Table A.3: Hyperparameters for training DQN

A.2 Hardware

[used an NVIDIA A100-SXM4-40GB GPU to train the model. Training the S-VAE
took about 7 hours, while training the diffusion model and Q-network each took around

6 to 10 hours.
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Appendix B
SOLAR-Generator

B.1 Operations in SOLAR

I 0 Color0 I I 1 Color1 I I 2 Color2 I I 3 Color3 I 4 Color4

Coloring
5 Color5 6 Coloré 7 Color7 8 Color8 9 Color9

| 10 Floodrillo | | 11 FloodFill1 | | 12 FloodFill2 | | 13 FloodFill3 | = 14 FloodFill4

FloodFill

15 FloodFills | | 16 FloodFillé | | 17 FloodFill7 | = 18 FloodFills | | 19 FloodFillo
Object | 20Moveu || 21Moved || 22Mover || 23MoveL |
Oriented

24 Rotate90 25 Rotate270 26 FlipH 27 FlipV

Critical 31 Copylnput 32 ResetGrid 33 ResizeGrid 34 Submit 35 None

Figure B.1: All operations compatible with SOLAR, 0-34 operations follow ARCLE,
and only in SOLAR, 35 (None) is for terminated episode. It means the episode is ended
after Submit.

The operations from 0 to 34 are identical to those used in ARCLE [10]. Since
Submit is an operation that receives a reward, it should only be used when the state
is considered correct and not excessively. Due to LDCQ’s fixed horizon, and to ensure
that the agent only uses Submit when the state is definitively correct, we added a None
operation that fills all subsequent states after Submit with the 11th color (10), which
does not exist in the original ARC (0-9). In other words, during training, the None

action emphasizes that the episode ends after Submit.

B.2 Detailed Procedure for Generating SOLAR

For generating SOLAR, we create a generator that can synthesize a large amount

of data for a given rule. Grid Maker is a hard-coded program specific to each task.
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Grid Maker contains the rules for synthesizing demonstration examples and test exam-
ples, and the synthesized solution action path consists of operations and selections. In
Grid Maker, data is formatted to be compatible with ARCLE. The Grid Maker con-
structs analogies with the same problem semantics but with various attributes such as
the shape, color, size, and position of objects. SOLAR-Generator can generate interme-
diate trajectories by interacting with ARCLE. The algorithm of the SOLAR-Generator
is designed to augment specific tasks using the Grid Maker.

Grid Maker was built as a data loader, which is used in ARCLE. In the original AR-
CLE environment, there was no need to load operations and selections—only the grid
was loaded since the problem alone was sufficient. To change this structure, the entire
environment would need to be recreated. Instead, operations and selections are now
loaded from the data loader’s description, allowing us to retain the original environ-
ment. Therefore, the process of creating input-output examples and generating action
sequences works within a single file. Grid Maker generates input-output examples and

trajectories through the following three steps.

Specifying Common Parts FEach task in the ARC dataset usually contains 3
demonstration examples, with common elements observed across these pairs. In the
common parts, attributes such as color, the type of task, and the presence of objects

are predetermined using random values before pair generation.

Synthesizing Examples In the example synthesis phase, the input of the original
task is augmented in a way that ensures diversity while preserving the integrity of
the problem-solving method. A random input grid is generated under conditions that
satisfy the analogy required by the task. A solution grid is created using a hard-coded
algorithm. For tasks involving pattern-based problems, as experimented in the paper,
selections are made to fit the grid size, and various operations are executed either
randomly or in a predetermined order. For object-based problems, the solution grid
is generated by an algorithm that finds the necessary objects in the input grid and

processes them according to the task requirements.
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Converting to ARCLE Trajectories This stage involves the creation of an ARCLE-
based trajectory that meticulously adheres to the problem-solving schema of the syn-
thesized examples. The entire process is carried out through a hard-coded algorithm.
During the example synthesis process, the locations of objects may already be known,
or they can be identified using a search algorithm. The information obtained is then
used to make the appropriate selections, and the trajectory is converted into an ARCLE

trajectory through an algorithm that leads to the correct solution.

If all steps are properly coded, it is possible to generate the operations and selections
that lead to the correct solution for any random input grid. These are then fed into
ARCLE to obtain intermediate states, rewards, and other information, and to verify
whether the correct result is reached. Once steps 1) to 3) are correctly implemented,
SOLAR-Generator can continuously and automatically generate as much data for the

given task as the user desires, using the Grid Maker.

B.3 Example of Data Synthesis in Grid Maker and the Generation of SO-
LAR

SOLAR-Generator can synthesize SOLAR for object-based tasks. Figure B.2 shows
a variant of Task 2 from Figure 1.1. Grid Maker generates random input grids with
some variances first. In this variant, each episode randomly selects two colors for the
boxes. Each inputs can have different grid sizes, and rules are established for objects of
each color within the episode. Then it generates the answer output grids for the input
grids through algorithm. The solution algorithm in Grid Maker proceeds as follows:
1) Find the top-left corner of the orange square and repeat the coloring process to
draw a diagonal line to the grid’s edge. 2) Find the bottom-right corner of the red
square and repeatedly color diagonally until the end of the grid is reached. With these
algorithms, Grid Maker can synthesize as many examples and SOLAR trajectories as

the user desires.
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Figure B.2: A gold standard trajectory for Task 2 in Figure 1.1. SOLAR contains its
trajectory ID, demonstration examples, and a test example with trajectory.

- 31 —



B.4 Algorithm of SOLAR-Generator

With the synthesized data through the Grid Maker module, the SOLAR-Generator
checks the sanity of the synthesized trajectory, and then saves the data. The whole

algorithm for SOLAR-Generator is described in Algorithm 1.
Algorithm 1: SOLAR-Generator

1 Input: task set 7, maximum grid size (H, W), number of samples N, number of
examples F

for task € T do

2
3 # Load the synthesized data Ds from the Grid Maker for the task
4 Dy < Grid Maker(task, (H, W), N, E)
5 for data € D, do
6 # Extract the demonstration examples, test example, and actions for
each episode
7 trajectory_ID, dem_ex, input_grid, output_grid, operations, selections <—
data
8 Add trajectory_ID, dem_ex, input_grid, output_grid to episode Tyuiq
9 # Set the initial state
10 current_gridy <— input_grid
11 clip_gridy <— None
12 t+ 0
13 s¢ < (input_grid, current_gridy, clip_grid,)
14 for (opry, sely) € (operations, selections) do
15 ay < (opry, sely)
16 if a; can be performed in s; then
17 # Update state and episode information using ARCLE
18 current_grid, ,, clip_grid, ,, r, terminated, <— ARCLE.step(sy, a;)
19 Add sy, ag, 1y, terminated; to Ty
20 Si41 < (input_grid, current_grid,  ,, clip_grid, ;)
21 t+—t+1
22 else
23 Save wrong data for debugging
24 break
25 if “gold-standard” in trajectory_ID and current_grid # output_grid
then
26 L Save wrong data for debugging
27 else
28 L Save episode T4
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B.5 Other SOLAR Examples

Figure B.3 illustrates two examples of episodes used in the experiment. Each episode

includes three random demonstration examples and a trajectory for a test example.

Simple task_gold-standard_64
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(a) Gold standard episode
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(b) Non-optimal episode

Figure B.3: SOLAR episode examples. (a) Gold standard episode that ideally reaches
the answer. (b) Non-optimal episode that is not ideal, but still reaches the answer state.
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Figure B.4 illustrates two different gold standard episodes. There might be multiple

gold standard trajectories in the same test example.
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Figure B.4: Two different gold standard trajectories for Task 1 in Figure 1.1.
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