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Abstract

Effective long-term strategies enable AI systems to navigate complex environments

by making sequential decisions over extended horizons. Similarly, reinforcement learn-

ing (RL) agents optimize decisions across sequences to maximize rewards, even without

immediate feedback. To verify that Latent Diffusion-Constrained Q-learning (LDCQ),

a prominent diffusion-based offline RL method, demonstrates strong reasoning abilities

in multi-step decision-making, I aimed to evaluate its performance on the Abstraction

and Reasoning Corpus (ARC). However, applying offline RL methodologies to enhance

strategic reasoning in AI for solving tasks in ARC is challenging due to the lack of suf-

ficient experience data in the ARC training set. To address this limitation, I introduce

an augmented offline RL dataset for ARC, called Synthesized Offline Learning Data

for Abstraction and Reasoning (SOLAR), along with the SOLAR-Generator, which

generates diverse trajectory data based on predefined rules. SOLAR enables the ap-

plication of offline RL methods by offering sufficient experience data. I synthesized

SOLAR for a simple task and used it to train an agent with the LDCQ method. Our

experiments demonstrate the effectiveness of the offline RL approach on a simple ARC

task, showing the agent’s ability to make multi-step sequential decisions and correctly

identify answer states. These results highlight the potential of the offline RL approach

to enhance AI’s strategic reasoning capabilities.
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국 문 요 약

효과적인 장기 전략은 AI 시스템이 복잡한 환경을 순차적 결정을 통해 장기적으로

탐색할 수 있게 한다. 이와 유사하게, 강화 학습 (RL) 에이전트는 즉각적인 피드백 없

이도 보상을 극대화하기 위해 연속적인 결정을 최적화한다. 본 연구는 대표적인 확산

기반 오프라인 RL 방법인 Latent Diffusion-Constrained Q-learning (LDCQ)가 다단계

의사결정에서 강력한 추론 능력을 발휘하는지 검증하기 위해 ARC (Abstraction and

Reasoning Corpus)에서 그 성능을 평가하는 것을 목표로 힌다. 그러나 ARC 훈련 세트

에 충분한 경험 데이터가 부족하여, 오프라인 RL 방법론을 ARC 과제 해결을위한 AI의

전략적 추론 강화에 적용하는 데 어려움이 있다. 이러한 한계를 해결하기 위해, ARC를

위한 증강 오프라인 RL 데이터셋인 Synthesized Offline Learning Data for Abstraction

and Reasoning (SOLAR)와 규정된 규칙을 기반으로 다양한 경로 데이터를 생성하는

SOLAR-Generator를 소개한다. SOLAR는 충분한 경험 데이터를 제공하여 오프라인

RL 방법을 적용할 수 있게 한다. 간단한 과제를 위해 SOLAR 데이터를 생성하고 이를

사용하여 오프라인 강화학습 방법 중 하나인 LDCQ 방법으로 에이전트를 훈련시켰다.

실험 결과, 오프라인 RL 접근 방식이 간단한 ARC 과제에서 효과적임을 보여주었으

며, 에이전트가 다단계 순차적 결정을 내리고 정답 상태를 올바르게 식별할 수 있음을

확인했다. 이러한 결과는 오프라인 RL 접근 방식이 AI의 전략적 추론 능력을 향상할

가능성을 시사한다.
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Chapter 1

Introduction

Effective long-term strategies involve deliberate reasoning, which refers to the thought-

ful evaluation of options to determine the best course of action [1]. This type of rea-

soning requires conscious effort and allows intelligent beings to systematically plan and

execute multi-step strategies to achieve complex long-term goals. Similarly, reinforce-

ment learning (RL) agents make decisions with the goal of maximizing rewards over

extended sequences of actions, even without immediate feedback. In both cases, reason-

ing involves considering a sequence of actions to reach an optimal outcome. The way

Q-values guide an RL agent toward desired outcomes can be seen as aligning with the

subgoals of deliberate reasoning, particularly in terms of multi-step decision-making to

achieve long-term objectives.

Recent approaches to offline RL combined with generative diffusion models have

shown significant improvements in multi-step strategic decision-making abilities for

future outcomes [2, 3, 4, 5]. In particular, Latent Diffusion-Constrained Q-learning

(LDCQ) [6] leverages diffusion models to sample various latents that compress multi-

step trajectories. These latents are then used to guide the Q-learning process. By

generating diverse data based on in-distribution samples, diffusion models help over-

come the limitations of fixed datasets. This integration of diffusion models into offline

RL enhances agents’ reasoning abilities, allowing them to consider multiple plausible

trajectories across extended sequences.

This research aims to apply the offline RL method to tackle reasoning benchmarks

that demand advanced reasoning capabilities. To this end, we chose the Abstraction

and Reasoning Corpus (ARC) [7], one of the key benchmarks for measuring abstract

reasoning ability in AI. As shown in Figure 1.1, the ARC training set consists of 400

grid-based tasks, each requiring the identification of common rules from the demon-
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stration examples, which are then applied to solve the test examples. ARC tasks are

particularly challenging for AI models because they require high-level reasoning abili-

ties, integrating core knowledge priors such as objectness, basic geometry, and topol-

ogy [7]. These core knowledge priors guide the decision-making process for selecting the

appropriate actions. Therefore, I believe that agents trained with offline RL methods

can leverage these core knowledge priors by learning from experienced data.

However, the existing ARC training dataset lacks sufficient trajectories to train

agents with offline RL methods. To address this limitation, this research proposes

Synthesized Offline Learning data for Abstraction and Reasoning (SOLAR), a dataset

for training offline RL agents. SOLAR provides diverse trajectory data, allowing the

agent to encounter various actions shaped by the core knowledge priors across different

episodes. In this research, I generated SOLAR for a simple task using the SOLAR-

Generator, which was then used to train agents with the LDCQ method.

This research attempts to apply offline RL methods to solving ARC tasks. Training

with LDCQ on SOLAR enabled agents to devise pathways to correct answer states, in-

cluding solution paths not present in the training data. This demonstrates the potential

of diffusion-based offline RL to enhance AI’s reasoning capabilities.

Demonstration

Examples

Test

Example

Task 1

?

Task 2

?

Task 3

?

Figure 1.1: Three tasks in ARC. Each task consists of demonstration examples and
a test example. Each example has an input grid and an output answer grid. Each
pixel in the grid is matched to a color corresponding to a value in the range 0–9. ARC
requires identifying common rules from the demonstration examples and applying them
to solve the test example correctly. Despite recent advancements in AI, current models
have consistently underperformed compared to humans on the ARC benchmark [8, 9].
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Chapter 2

Preliminaries

2.1 ARC Learning Environment (ARCLE)

state st

clipgridinput grid

selection

[x,y,h,w]

[3,0,2,2]

operation
Paste
30 

action at
state st+1state st+1

clipgridinput grid

ARCLE

step

reward 0 terminated False

episode information
reward 0 terminated False

episode information

Figure 2.1: An example of a single step in ARCLE. In this example step, the action
has an operation 30 (Paste) and a selection of [3, 0, 2, 2]. The top-left coordinate of the
selection box is [3, 0] and the bottom-right coordinate is [5, 2]. [ht, wt] is calculated by
subtracting [3, 0] from [5, 2]. When ARCLE executes this action, the current clipboard
is pasted into the bounding box specified by the selection on the current grid. It then
returns episode information, including the reward and termination status.

ARCLE [10] is a Gymnasium-based environment developed to facilitate RL ap-

proaches for solving ARC tasks. ARCLE frames ARC tasks within a Markov Decision

Process (MDP) structure, providing an environment where agents can interact with

and manipulate grid-based tasks. This MDP structure enables ARC tasks to be solved

through sequential decision-making.

ARCLE handles states and actions following the O2ARC web interface [11]. As

shown in Figure 2.1, when ARCLE executes an action at on the current state st,

it returns the next state st+1, along with episode information about the reward and

termination status. A state st consists of (input grid, gridt, clipboardt) at timestep t.

The input grid represents the initial state of the test example, the gridt denotes the

current grid at time t after several actions have been applied, and the clipboardt stores

the copied grid by the Copy operation. An action at consists of (operationt, xt, yt, ht, wt),

– 3 –



where operationt represents the type of transformation, xt and yt denote the coordinates

of the top-left point of the selection box, and ht and wt represent the difference between

the bottom-right and top-left coordinates. All subsequent notations for st and at will

adhere to this definition for clarity. Reward is only given when the Submit operation

is executed at the answer state, and the episode terminates either after receiving the

reward or when Submit is executed across multiple trials. All possible operations are

mentioned in Appendix B.1.

2.2 Diffusion-Based Offline Reinforcement Learning

Offline RL focuses on learning policies from previously collected data, without in-

teracting with the environment. However, Offline RL faces challenges, including data

distribution shifts, limited diversity in the collected data, and the risk of overfitting to

biased or insufficiently representative samples. To address these issues, several works

in offline RL have focused on improving learning efficiency with large datasets and

enhancing generalization to unseen scenarios while balancing diversity and ensuring

data quality [12, 13, 14].

Recent offline RL methods offer promising solutions in long-horizon tasks and han-

dling out-of-support samples through diffusion models. For instance, Diffuser [2] gen-

erates tailored trajectories by learning trajectory distributions, reducing compounding

errors. Beyond this, a range of advanced diffusion-based offline RL approaches, such

as Decision Diffuser (DD) [3], AdaptDiffuser [4], HDMI [5] have demonstrated the

effectiveness of combining diffusion models with offline RL.

– 4 –



Chapter 3

LDCQ for ARC

Latent Diffusion-Constrained Q-learning (LDCQ) [6] combines latent diffusion and

batch-constrained Q-learning to address long-horizon tasks with sparse rewards. By

using sampled latents that encode H-length trajectories, LDCQ reduces extrapolation

errors and enhances decision-making in multi-step tasks. The training process of LDCQ

is shown in Figure 3.1: 1) training the β-VAE to learn latent representations, 2) training

the diffusion model using the latent vectors encoded by the β-VAE, and 3) training the

Q-network with latents sampled from the diffusion model.

At:t+H

st:t+H
encoder

st+h

Decoder at+h

segment

trajectory

(a) Training β-VAE

Forward Process 
Diffusion Model

Noised

Latent

st

T times

(b) Training Diffusion Model

Denoised

Latents

DDPM Sampling

with Diffusion Model 

Random 
Noises

Q-Net

st

T times

(c) Training Q-Network

st+h

Decoder at+h

Candidate

Latents

Max Q

Latent

Q-Net

(d) Inference step

Figure 3.1: (a)–(c) Training stages of LDCQ. (a) Training a β-VAE with an encoder
that encodes H -horizon segment trajectories into latents zt, and a policy decoder that
decodes actions based on zt and state st+h where h ∈ [0, H) contained in the latent.
(b) Training a diffusion model based on zt and the st. (c) Training a Q-network using
latents sampled through the diffusion model. (d) LDCQ inference step at st+h. Possible
latents at st are sampled through the diffusion model, and the agent executes actions
resulting from decoding the latent with the highest Q-value.
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3.1 Training Latent Encoder and Policy Decoder

The first stage of LDCQ training is to train a β-VAE that learns latent represen-

tations. In this stage, β -VAE learns how actions are executed over multiple steps to

change the state. With H -horizon latents, it becomes easier to capture longer-term

changes in the state. I use SOLAR as the training dataset D, which contains H -length

segmented trajectories τt . Each τt consists of state sequences st:t+H = [st, st+1, ..., st+H−1]

and action sequences at:t+H = [at,at+1, ...,at+H−1], along with additional informa-

tion such as demonstration examples. The state, as described in Section 2.1, consists

of the test example represented as (input grid, gridt, clipboardt). Each grid is passed

through a layer to generate embeddings, which are then concatenated to form the

state representation. Similarly, the action, as described in Section 2.1, is composed of

(operationt, xt, yt, ht, wt), and each component is decoded individually by the policy

decoder. The loss for action decoding is calculated as the sum of the losses for each

component. The latent encoded by the β-VAE contains information about the ARC

task’s demonstration example, the test example input, the current state, and the action

performed.

As shown in Figure 3.1a, during the β-VAE training stage, the encoder qϕ is trained

to encode τt into the latent representation zt, and the low-level policy decoder πθ is

trained to decode actions based on the given state and latent. For example, given the

latent zt and a state from the segment trajectory, st+h where h ∈ [0, H), the policy

decoder decodes the action at+h for st+h. The β-VAE is trained by maximizing the

evidence lower bound (ELBO), minimizing the loss in Eq. 3.1. The loss consists of the

reconstruction loss from the low-level policy decoder and the KL divergence between

the approximate posterior qϕ(zt|τt) and the prior pω(zt|st).

LVAE(θ, ϕ, ω) = −Eτt∼D

[
Eqϕ(zt|τt)

[
t+H−1∑
l=t

log πθ(al|sl, zt)

]
− βDKL(qϕ(zt|τt) ∥ pω(zt|st))

]
(3.1)
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3.2 Training Latent Diffusion Model

In the second stage, the latent diffusion model is trained to generate latents based

on the latent representations encoded by β -VAE. The training data consists of (st, zt)

pairs, which are used to train a conditional latent diffusion model pψ(zt|st) by learning

the denoising function µψ(z
j
t , st, j), where j ∈ [0, T ] is diffusion timestep. This allows

the model to capture the distribution of trajectory latents conditioned on st. q(z
j
t |z0

t )

denotes the forward Gaussian diffusion process that noising the original data. Following

previous research [15, 6], the diffusion model is trained to predict the original latent

rather than the noise, balancing the loss over diffusion time steps using the Min-SNR-γ

strategy [16]. The loss function used to train the diffusion model is shown in Eq. 3.2.

Here, zjt , j ∈ [0, T ] represents noised latent on j-th diffusion time step, when j = 0

then z0
t = zt and zTt is Gaussian noise.

L(ψ) = Ej∼[1,T ],τH∼D,zt∼qϕ(zt|τt),zjt∼q(z
j
t |z0

t )

[
min{SNR(j), γ}∥z0

t − µψ(z
j
t , st, j)∥2

]
(3.2)

With the trained diffusion model, diverse latents encapsulating candidate trajec-

tories conditioned on the current state st can be sampled. These latents resemble

trajectories in the training data while offering flexibility to generate plausible alterna-

tives, allowing the model to generalize and evaluate multiple options before selecting

an action. This enhances decision-making in unseen scenarios and is particularly ben-

eficial for tasks with sparse rewards or ambiguous intermediate states, where diverse

trajectories significantly improve reasoning capabilities.

3.3 Training Q-Network

Finally, the latent vectors sampled by the latent diffusion model are used for Q-

learning. For sampling latents, I use the DDPM method [17]. The trained diffusion

model samples latents by denoising random noise using the starting state informa-

tion st. A set of (st, zt, rt:t+H , st+H) is used for training Q-Network, where rt:t+H =

– 7 –



∑t+H−1
l=t γlrl denotes the discounted sum of rewards. Here, DDPM sampling is used to

sample zt+H for st+H . For Q-learning, I use Clipped Double Q-learning [18] as shown

in Eq. 3.3 with Prioritized Experience Replay buffer [19] to improve learning stability

and mitigate overestimation. The trained Q-network Q(st, zt) evaluates the expected

return of performing various H-length actions, with zt sampled via DDPM based on

st. This allows the network to efficiently calculate the value of actions over H-steps to

estimate future returns. Furthermore, since ARC tasks involve inferring analogies from

demonstration pairs, the embedded representation of the demonstration pair, pemb, is

also used in the calculation of the Q function. This approach aims to make the Q-

values vary depending on the demonstration pair embeddings, encouraging the agent

to consider the demonstration examples more effectively when selecting actions.

Q(st, zt,pemb)←

(
rt:t+H + γHQ(st+H , argmax

z∼pψ(zt+H |st+H)

Q(st+H , z,pemb),pemb)

)
(3.3)

The detailed hyperparameters used for training the model are described in Ap-

pendix A.
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Chapter 4

Synthesized Offline Learning data for Ab-

straction and Reasoning (SOLAR)

This research introduces a new dataset, Synthesized Offline Learning Data for Abstrac-

tion and Reasoning (SOLAR), which can be used to train offline RL methods. Solving

ARC tasks can be considered a process of making multi-step decisions to transform the

input grid into the output answer grid. I believe that the process of making these deci-

sions inherently involves applying core knowledge priors, objectness, goal-directedness,

numbers and counting, and basic geometry and topology [7], which are necessary for

solving ARC tasks. The ARC training set lacks information on how to solve the task,

and it only provides a set of demonstration examples and a test example for each task,

as shown in Figure 1.1. To address this, I aim to provide the trajectory data to solve

the task through SOLAR, enabling them to learn how actions change the state based

on the application of core knowledge priors.

4.1 SOLAR Structure

SOLAR contains various transition data (st,at, st+1), where actions at are taken

in different states st, and the result st+1 observed. To facilitate effective learning and

a combination of core knowledge, I use ARCLE [10]. By designing a simple reward

system that only provides rewards upon reaching the correct solution, I can guide the

agent towards the desired state using reinforcement learning methods.

As shown in Figure 4.1, SOLAR consists of two key components: Demonstration

Examples and Test Example with Trajectory. The demonstration examples and the test

examples serve the same roles as in ARC. Through the demonstration examples, the

common rule for transforming the input grid to the output grid is identified and then

– 9 –



applied to solve the test example. Trajectory data means the episode data that starts

from test input s0.

SOLAR-Generator

Loading Synthesized Data

Validating Trajectory

Structuring SOLAR

Demonstration Examples

Demonstration Examples

Test Example Action Sequence

Test Example with Trajectory

Grid Maker

SOLARs1a0

st

s0 sans

at

a0

r0

rt st+1 ARCLE

s0 sans

aans

for all

actions step

sanity check

execute transition

Figure 4.1: Data synthesis procedure with SOLAR-Generator. The state and actions
consist of as mentioned in Section 2.1. 1) Loading Synthesized Data: The Grid Maker
module applies constraints, augments input-output pairs, and synthesizes solutions for
specific tasks by utilizing actions. 2) Validating Trajectories: Checks whether the gen-
erated actions are executable in ARCLE. 3) Structuring SOLAR: Organizes and stores
the synthesized data in SOLAR based on the defined format. This step determines
what information to include in the dataset and whether to segment episodes into fixed-
length chunks or store them as a whole.

4.2 SOLAR-Generator

To synthesize SOLAR, I introduce SOLAR-Generator, which provides a method for

generating diverse trajectory data. SOLAR-Generator augments ARC trajectories by

following ARCLE formalism, addressing the inherent complexity and diversity of ARC

tasks. Figure 4.1 illustrates the data synthesis procedure, which is carried out in three

steps: 1) Loading Synthesized Data, 2) Validating Trajectories with ARCLE, and 3)

Structuring SOLAR.

Loading Synthesized Data The first step in SOLAR-Generator is to load the syn-

thesized data for the target tasks. SOLAR provides the Grid Maker with common

parameters such as maximum grid size and the number of demonstration examples per

test example. Each task has its own specific Grid Maker, which synthesizes demon-

stration examples, test examples, and corresponding action sequences (selections and
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operations) based on the task’s constraints and rules. If desired, non-optimal trajecto-

ries containing random actions can also be synthesized. At this stage, the Grid Maker

synthesizes only grid pairs and possible action sequences. The full trajectory data for

the test example is constructed after passing through ARCLE. More details about how

the Grid Maker synthesizes the input-output grids and action sequences are described

in Appendix B.

Validating Trajectories with ARCLE After synthesizing various grids and action

sequences with the Grid Maker, SOLAR-Generator checks whether the action sequences

are valid in ARCLE. The Grid Maker serves as a data loader, enabling it to load and

validate the synthesized data. Through this process, ARCLE provides intermediate

states, rewards, and termination status for each step, and verifies that each action is

correctly executed in the current state. This step is particularly important for non-

optimal trajectories, where operations and selections may be generated randomly, as

invalid selections can sometimes be synthesized by the Grid Maker. For gold standard

trajectories, intended as correct solutions, SOLAR-Generator ensures that the final grid

of the trajectory matches the expected output grid of the test example. As a result,

this stage is useful for checking and debugging the synthesized trajectories, preventing

unintended errors.

Structuring SOLAR After the trajectory validation is complete, the episodes are

saved into SOLAR. In this step, user can determine the necessary information to include

in SOLAR. At its core, SOLAR includes episodes consisting of state, action, reward,

and termination information at each step, which are essential for training with offline

RL methods. In addition to the previously mentioned information, SOLAR can also

store various data from ARCLE, such as grid sizes at each step, binary mask versions

of selections, and other relevant information needed for different learning methods. In

this research, I designed the data to work with methods like LDCQ, which require

trajectories of fixed horizon length H . Therefore, the trajectories are segmented into

fixed-length chunks with a horizon length of H .
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Through these three steps, SOLAR-Generator synthesizes diverse solutions by al-

tering action orders or using alternative operation combinations. This is achieved by

the Grid Maker, which generates data using pre-implemented algorithms, enabling the

user to create as many trajectories as needed. SOLAR provides a sufficient training set

for learning various problem-solving strategies. By offering diverse trajectories while

adhering to the task-solving criteria, SOLAR bridges the gap between ARC’s reasoning

challenges and the sequential decision-making process of offline RL. For additional de-

tails about SOLAR and SOLAR-Generator, see the project website1 and Appendix B.

1https://github.com/GIST-DSLab/SOLAR-Generator

– 12 –



Chapter 5

Design SOLAR for a Simple Task

One of the most crucial factors in solving ARC tasks is the ability to recognize whether

the current state is the answer state and to submit the correct answer accordingly. In

ARC, each task embodies a single analogy, but this analogy can be approached through

various action sequences [9, 20]. Some solution paths may better exemplify the under-

lying analogy, while others might be less optimal or clear [20]. Moreover, even when

solving different test examples within the same task where the same rule is applied, the

actual action sequence can vary depending on factors like the grid size or the arrange-

ment of elements in the input grid. The diversity in potential action sequences to solve

a single ARC task highlights the complexity of abstract reasoning and the importance

of identifying the core analogy. Therefore, an agent’s ability to judge that it has reached

an answer state implies that it has comprehended the underlying analogy and executed

the necessary ARCLE actions to arrive at the correct solution. This ability to recognize

the answer state is critical, as it demonstrates the agent’s understanding of the task’s

inherent logic and its capacity to apply appropriate problem-solving strategies. In AR-

CLE, the reward is given only when the agent predicts the Submit operation and the

submitted grid is the same as the answer grid. To evaluate whether an agent trained

with LDCQ can correctly identify and submit at the answer state—even when non-

optimal trajectories are included in the training dataset—I mixed in incorrect episodes

where the Submit operation is conducted in non-answer states.

Given these characteristics of ARC tasks, our experimental objectives are: 1) To

assess whether the model can reach the answer state when various non-optimal tra-

jectories are mixed with gold standard trajectories, and 2) To determine whether the

model can recognize the answer state and perform the Submit action appropriately.

By demonstrating the model’s ability to identify the answer state, I can infer that it
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has internalized core knowledge priors and understands the high-level problem-solving

methods necessary for ARC tasks. I synthesized SOLAR for a simple task designed to

show these experimental objectives.

Target Task

?
submit

Gold Standard Trajectory

Non-Optimal Trajectory

Non-Optimal Trajectory

Resize

Grid

step 0 step 1 step 2 step 3

Random 
action

Random 
action

Random 
actions

Random 
actions

FlipV SubmitPasteCopyO reward

1

Submit

Submit

reward

0

step 4

reward

1

Figure 5.1: SOLAR episodes for a simple task: The gold standard trajectory (episode)
contains the steps to solve the problem by using the core knowledge priors properly.
The non-optimal episodes branch off at a random step within the standard trajec-
tory, performing random operations such as Rotate, Flip, or Copy & Paste, and then
Submit after a certain number of steps.

A simple task was designed to require core knowledge priors such as objectness and

geometry. This task necessitates the ability to consider the input grid as an object

and then perform actions based on this object. I constrained the maximum grid size

to 10x10, and each episode includes three demonstration pairs. In creating SOLAR

for this task, I constructed the dataset to include both gold standard episodes—which

successfully reach the answer state and perform the Submit action—and non-optimal

episodes—which follow random paths that may or may not reach the answer state.

The inclusion of non-optimal trajectories was intended to evaluate whether the agent

can recognize the answer state and appropriately perform the Submit action, thereby

assessing its reasoning abilities rather than simply mimicking the actions in the dataset.

As shown in Figure 5.1, the gold standard episode for this task consists of 5 steps: 1)

ResizeGrid to make the grid two times longer vertically, 2) CopyO to copy the upper

half of the current grid, as it matches the input grid, 3) Paste to apply it to the lower

half of the grid, 4) FlipV to vertically flip the upper half of the current grid, and 5)
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Submit, as it reaches the answer state.

In the non-optimal episodes, the trajectories initially follow the gold standard tra-

jectory but deviate at a random step to execute random actions for several steps.

I constrained the random operations to FlipV (vertical flip), FlipH (horizontal flip),

Rotate90 (counterclockwise rotation), Rotate270 (clockwise rotation), and CopyO (up-

dating the clipboard with the selected area). For selection, it was constrained to either

two options (upper half or lower half of the current grid) or three options (upper

half, lower half, or the whole grid). Specifically, there are two options for Rotate90,

Rotate270, and CopyO, and three options for the others. When CopyO is selected, the

subsequent Paste action is forced onto the other possible selection option. This simpli-

fied selection allows for focusing on assessing the AI’s decision-making by sequentially

combining operations.

Each non-optimal episode contains approximately ten steps to the end, allowing

the trajectory to include various actions in diverse states. For each problem pair, one

gold standard episode and nine non-optimal episodes were generated, totaling 5,000

episodes across 500 problem pairs. As a result, the training set was composed such

that approximately 10% of the total episodes included the Submit operation at the

answer state.
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Chapter 6

Experiments and Results

6.1 Evaluation Process using ARCLE

x T times 

Demonstration

Examples

Test Example

state st

clipgridinput grid

state st

selection

[x,y,h,w]

[0,0,5,5]

operation
Submit

34 

action at

clipgridinput grid

ARCLE

step

reward 0 terminated False

episode information
reward 1 terminated True

episode information

DDPM Sampling

with Diffusion Model Decoder at

Candidate

Latents

Max Q

Latent

Q-Netz z

?

ARCLE
state st+1

T times
Inference Network

Figure 6.1: Inference framework for solving ARC tasks. ARCLE loads the task from
the dataset and manages state information as well as the termination status of the
current evaluation episode. The inference network of LDCQ performs DDPM sampling
on the given state to extract candidate latents, then decodes the corresponding action
for max Q latent, and sends it to ARCLE. ARCLE executes the action and updates
the state information accordingly. This process alternates between ARCLE and the
inference network, continuing the inference until the episode ends.

After training the agent using LDCQ on the SOLAR dataset, an evaluation of its

performance was conducted. To evaluate the experiment, I synthesized an evaluation

SOLAR set with 100 test examples, each paired with three synthesized demonstration

examples. The evaluation SOLAR set was synthesized by the SOLAR-Generator using

the same tasks but with a random seed different from the one used for the training set.

To measure the effectiveness of decision-making using the Q-function, two accuracy

metrics are measured: 1) Whether the agent reaches the answer state, and 2) Whether
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it predicts the Submit operation at the answer state to receive a reward.

The evaluation process is carried out through ARCLE, which manages the prob-

lem and its corresponding solution from SOLAR. ARCLE handles state transitions,

performs actions, and verifies whether the submitted solution is correct. As depicted

in Figure 6.1, ARCLE interacts with the LDCQ inference network by alternating the

exchange of st and at, facilitating the decision-making process toward reaching the cor-

rect answer state. The latent zt represents a segment trajectory spanning from timestep

t to t + H − 1, and is trained to accurately decode actions for any state within this

segment trajectory.

In the original LDCQ methodology, inference is performed by executing several

horizons using a single latent, followed by predicting the next latent. However, in the

task used for this research, which has a gold standard trajectory consisting of five steps,

it is possible to complete the task with just one latent sampling from the initial state.

While reaching the correct answer in this manner is not inherently problematic, one of

the primary goals of this research is to analyze whether the agent learns the knowledge

prior to how actions work across various states. Thus, instead of focusing solely on

solving the problem in as few steps as possible, only one action is conducted per latent.

With this, the results demonstrate that the agent can make far-sighted decisions to

reach the answer not just from the beginning to the end, but also through intermediate

steps.

6.2 Results

To demonstrate the strengths of the diffusion-based offline RL method guided by

Q-function, I compare three approaches:

• VAE prior (VAE): This method uses a latent sampled from the VAE state prior

pω(zt|st). The VAE state prior is trained in β-VAE training stage by calculating

the KL divergence between pω(zt|st) and the posterior qϕ(zt|τt), aligning the

latent distribution with the trajectory starting from state st.
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• Diffusion prior (DDPM): This method uses a latent sampled from the diffusion

model pψ(zt|st) through the DDPM method [17]. The sampled latents closely

resemble the training data, with added variance during the denoising process.

This method is similar to behavior cloning in that it operates without guidance

from rewards or value functions.

• Max Q latent (LDCQ): This method selects a latent with the highest Q-value

from those sampled by the diffusion model, argmaxz∼pψ(zt|st)Q(st, z), to make a

decision at st.

The evaluation of each approach was conducted five times for the evaluation SOLAR

set. The results, summarized in Figure 6.2a, show the success rates for: 1) Whether

the agent reaches the correct answer state and 2) Whether the agent executes Submit

operation in the answer state. When using the VAE prior, the agent reaches the correct

answer state in only about 10% of test episodes and submits the answer in just 1%.

With latents sampled using DDPM, about 10% of the answers are correctly submitted,

while the agent reaches the answer state approximately 37% of the time. When using

LDCQ, the agent reaches the answer state in over 90% of cases and successfully submits

the correct answer in about 77% of test episodes. These results demonstrate that the

Q-function enhances the agent’s ability to both reach the correct answer and recognize

when it has arrived at the answer state.

Figure 6.2b and Figure 6.2c highlight the different solving strategies exhibited by

the Q-function. When using the latent sampled with DDPM, the agent performs diverse

actions, occasionally reaching the goal by chance. In contrast, with the Q-function, the

agent consistently reaches the correct answer in every evaluation. In scenarios where the

input grid is vertically symmetrical, the agent even skips unnecessary operation FlipV

and proceeds directly to Submit. Notably, the training dataset does not include any

trajectories where the FlipV operation is skipped, even for symmetrical grids. With

the Q-function, the model recognizes that applying FlipV does not alter the state.

Consequently, the Q-value for submitting at that state increases, prompting the agent
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to choose the Submit operation. This demonstrates the reasoning ability of the agent

trained with LDCQ in solving ARC tasks, as recognizing when the correct answer state

has been reached is crucial.

VAE DDPM LDCQ
0
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s R
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e 
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)

1.0
9.8

76.6

13.0

36.8

92.4
Submit Answer
Reach Answer

(a) Test accuracy for three methods

Resize

Grid

Random 
actions SubmitPaste

Rotate

90

reward

1

step 0 step 1 step 2 step 9 step 10

(b) Inference example with DDPM method

step 0 step 1 step 2 step 3

Resize

Grid SubmitPasteCopyO

reward

1

(c) Inference example with LDCQ method

Figure 6.2: (a) The evaluation results for 100 test examples. LDCQ shows significantly
improved performance compared to the other two methods, successfully reaching the
correct answer state and executing the Submit operation at the answer state. The error
bars represent the 96% confidence interval. (b) With the latent sampled with DDPM,
the agent sometimes reaches the correct answer after performing various actions. This
occurred rarely during evaluation, and even when it did, it did not appear in subsequent
evaluations. (c) When using LDCQ, it often shows the case that skips unnecessary
actions. The inference example with the VAE prior method is omitted because it rarely
solves the problem.
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Chapter 7

Limitations & Discussions

In our experiment, the LDCQ method showed significant improvement in reaching

the goal. However, in approximately 16% of cases, the agent reached the correct state

but proceeded with another action instead of submitting the solution, even with the

assistance of the Q-function. This issue arises because the Q-function, while enhancing

decision-making, sometimes assigns higher values to actions other than submission,

causing the agent to bypass the goal state. This suggests that the Q-function is not

perfectly aligned with the final objective in ARC. Notably, in ARC tasks, even when

solving different test examples within the same task where the same rule is applied, the

actual action sequence can vary depending on factors like grid size or the arrangement of

elements in the input grid. The current Q-values are calculated based on the absolute

state values, which occasionally leads to misjudgments when submitting the correct

solution. Therefore, improving the agent’s ability to accurately determine when to

submit the correct answer is necessary for future research.

While the LDCQ approach performs well in a simple ARC task setting, more com-

plex tasks and multi-task environments present additional challenges. Unlike single-task

scenarios, where the agent follows a fixed strategy toward a predefined answer, multi-

task settings demand flexibility to adapt to changing goals or new possibilities during

task execution. I expect that addressing these challenges could involve integrating task

classifiers for Q-learning. Additionally, incorporating modules so that the agent can re-

vise its strategy during task execution—adjusting based on evolving states or objectives

rather than rigidly following the initial strategy—may enhance its adaptability.

In traditional supervised RL approaches, such as those described by [21], stitching

typically occurs only when the goal remains consistent across tasks. To address this

limitation, I employed temporal data augmentation, which involves starting from an
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intermediate state near the goal and setting a new target. In SOLAR, this could be

extended by using non-optimal paths as goals in non-optimal trajectories. However,

in ARC, where goals are determined by demonstration pairs, augmenting all goals is

impractical. More careful strategies are needed to enable stitching for entirely new goals

not previously encountered. If methodologies are developed that can combine existing

actions toward different goals, I expect that SOLAR will facilitate these combinations.

Going forward, refining how the Q-function evaluates states and actions will be

crucial. To improve performance, especially in multi-task environments, incorporating

mechanisms that not only assess the state and action in relation to the goal but also

guide the agent toward the most effective path to achieve the ultimate objective will

be beneficial. Recognizing the task’s context and how close states are to the correct

solution is essential for ensuring that the Q-function helps navigate toward the goal

efficiently.
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Chapter 8

Conclusion

This research demonstrates the potential of offline reinforcement learning (RL), par-

ticularly the Latent Diffusion-Constrained Q-learning (LDCQ) method, for efficiently

sequencing and organizing actions to solve tasks in grid-based environments like the

Abstraction and Reasoning Corpus (ARC). To our knowledge, this work is the first

to tackle ARC using a diffusion-based offline RL model within a properly designed

environment, guiding agents step-by-step toward correct solutions without generating

the full ARC grid at once. Through training on SOLAR, I successfully applied and

evaluated offline RL methods, showing that agents can learn to find paths to the cor-

rect answer state and recognize when they’ve reached it. This suggests that RL with a

well-designed environment is promising for abductive reasoning problems, potentially

reducing data dependency compared to traditional methods. As tasks become more

complex, especially in multi-task settings, refining the Q-function to address unique

reward structures is crucial, with multi-task environments requiring task-specific adap-

tations to account for varying states and rewards. Integrating modules like task clas-

sifiers or object detectors could enhance the agent’s ability to dynamically adjust its

strategy, promoting more flexible decision-making. This research opens new avenues

for program synthesis in analogical reasoning tasks with RL environments, potentially

integrating with analogy findings techniques (hypothesis search with LLMs) to handle

a wider range of ARC tasks.
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Appendix A

Training details

A.1 Hyperparameters

I used a horizon length of 5 for encoding skill latents, allowing the model to plan

and evaluate actions over a five-step lookahead. The diffusion model was trained with

500 diffusion steps to minimize variance in the sampling process and ensure accurate

decoding of operations and selections in ARCLE. The discount factor was set to 0.5 to

balance immediate and future rewards, considering that ARCLE tasks typically require

fewer than 20 steps to reach the correct answer.

The hyperparameters used for training the three stages of LDCQ are summarized

in Tables A.1, A.2, and A.3.

Parameter Value

Learning rate 5e-5

Batch size 128

Epochs 400

Horizon (H) 5

Latent dimension (z) 256

KL loss ratio (β) 0.1

Hidden layer dimension 512

Table A.1: Hyperparameters for training β-VAE
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Parameter Value

Learning rate 1e-4

Batch size 32

Epochs 400

Diffusion steps (T ) 500

Drop probability 0.1

Variance schedule linear

Sampling algorithm DDPM

γ (For Min-SNR-γ weighing) 5

Table A.2: Hyperparameters for training latent diffusion model

Parameter Value

Learning rate 5e-4

Batch size 128

Discount factor (γ) 0.5

Target net update rate (ρ) 0.995

PER buffer α 0.7

PER buffer β
Linearly increased from 0.3 to 1,

grows by 0.03 every 2000 steps

Diffusion samples for batch argmax 100

Table A.3: Hyperparameters for training DQN

A.2 Hardware

I used an NVIDIA A100-SXM4-40GB GPU to train the model. Training the β-VAE

took about 7 hours, while training the diffusion model and Q-network each took around

6 to 10 hours.
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Appendix B

SOLAR-Generator

B.1 Operations in SOLAR

0 Color0 1 Color1 2 Color2 3 Color3

5 Color5

4 Color4

6 Color6 7 Color7 8 Color8 9 Color9

10 FloodFill0 11 FloodFill1 12 FloodFill2 13 FloodFill3

15 FloodFill5

14 FloodFill4

16 FloodFill6 17 FloodFill7 18 FloodFill8 19 FloodFill9

20 MoveU 21 MoveD 22 MoveR 23 MoveL

24 Rotate90 25 Rotate270 26 FlipH

28 CopyI 29 CopyO 30 Paste

31 CopyInput 32 ResetGrid 33 ResizeGrid 34 Submit 35 None

27 FlipV

Coloring

Critical

Clipboard

Object

Oriented

FloodFill

Figure B.1: All operations compatible with SOLAR, 0–34 operations follow ARCLE,
and only in SOLAR, 35 (None) is for terminated episode. It means the episode is ended
after Submit.

The operations from 0 to 34 are identical to those used in ARCLE [10]. Since

Submit is an operation that receives a reward, it should only be used when the state

is considered correct and not excessively. Due to LDCQ’s fixed horizon, and to ensure

that the agent only uses Submit when the state is definitively correct, we added a None

operation that fills all subsequent states after Submit with the 11th color (10), which

does not exist in the original ARC (0–9). In other words, during training, the None

action emphasizes that the episode ends after Submit.

B.2 Detailed Procedure for Generating SOLAR

For generating SOLAR, we create a generator that can synthesize a large amount

of data for a given rule. Grid Maker is a hard-coded program specific to each task.
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Grid Maker contains the rules for synthesizing demonstration examples and test exam-

ples, and the synthesized solution action path consists of operations and selections. In

Grid Maker, data is formatted to be compatible with ARCLE. The Grid Maker con-

structs analogies with the same problem semantics but with various attributes such as

the shape, color, size, and position of objects. SOLAR-Generator can generate interme-

diate trajectories by interacting with ARCLE. The algorithm of the SOLAR-Generator

is designed to augment specific tasks using the Grid Maker.

Grid Maker was built as a data loader, which is used in ARCLE. In the original AR-

CLE environment, there was no need to load operations and selections—only the grid

was loaded since the problem alone was sufficient. To change this structure, the entire

environment would need to be recreated. Instead, operations and selections are now

loaded from the data loader’s description, allowing us to retain the original environ-

ment. Therefore, the process of creating input-output examples and generating action

sequences works within a single file. Grid Maker generates input-output examples and

trajectories through the following three steps.

Specifying Common Parts Each task in the ARC dataset usually contains 3

demonstration examples, with common elements observed across these pairs. In the

common parts, attributes such as color, the type of task, and the presence of objects

are predetermined using random values before pair generation.

Synthesizing Examples In the example synthesis phase, the input of the original

task is augmented in a way that ensures diversity while preserving the integrity of

the problem-solving method. A random input grid is generated under conditions that

satisfy the analogy required by the task. A solution grid is created using a hard-coded

algorithm. For tasks involving pattern-based problems, as experimented in the paper,

selections are made to fit the grid size, and various operations are executed either

randomly or in a predetermined order. For object-based problems, the solution grid

is generated by an algorithm that finds the necessary objects in the input grid and

processes them according to the task requirements.
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Converting to ARCLE Trajectories This stage involves the creation of an ARCLE-

based trajectory that meticulously adheres to the problem-solving schema of the syn-

thesized examples. The entire process is carried out through a hard-coded algorithm.

During the example synthesis process, the locations of objects may already be known,

or they can be identified using a search algorithm. The information obtained is then

used to make the appropriate selections, and the trajectory is converted into an ARCLE

trajectory through an algorithm that leads to the correct solution.

If all steps are properly coded, it is possible to generate the operations and selections

that lead to the correct solution for any random input grid. These are then fed into

ARCLE to obtain intermediate states, rewards, and other information, and to verify

whether the correct result is reached. Once steps 1) to 3) are correctly implemented,

SOLAR-Generator can continuously and automatically generate as much data for the

given task as the user desires, using the Grid Maker.

B.3 Example of Data Synthesis in Grid Maker and the Generation of SO-

LAR

SOLAR-Generator can synthesize SOLAR for object-based tasks. Figure B.2 shows

a variant of Task 2 from Figure 1.1. Grid Maker generates random input grids with

some variances first. In this variant, each episode randomly selects two colors for the

boxes. Each inputs can have different grid sizes, and rules are established for objects of

each color within the episode. Then it generates the answer output grids for the input

grids through algorithm. The solution algorithm in Grid Maker proceeds as follows:

1) Find the top-left corner of the orange square and repeat the coloring process to

draw a diagonal line to the grid’s edge. 2) Find the bottom-right corner of the red

square and repeatedly color diagonally until the end of the grid is reached. With these

algorithms, Grid Maker can synthesize as many examples and SOLAR trajectories as

the user desires.
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Demonstration Examples

Test Example with Trajectory

Task 2_gold-standard_7

Color

7

Color

2

Submit
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Figure B.2: A gold standard trajectory for Task 2 in Figure 1.1. SOLAR contains its
trajectory ID, demonstration examples, and a test example with trajectory.
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B.4 Algorithm of SOLAR-Generator

With the synthesized data through the Grid Maker module, the SOLAR-Generator

checks the sanity of the synthesized trajectory, and then saves the data. The whole

algorithm for SOLAR-Generator is described in Algorithm 1.

Algorithm 1: SOLAR-Generator

1 Input: task set T, maximum grid size (H,W ), number of samples N, number of
examples E

2 for task ∈ T do
3 # Load the synthesized data Ds from the Grid Maker for the task
4 Ds ← Grid Maker(task, (H, W), N, E)
5 for data ∈ Ds do
6 # Extract the demonstration examples, test example, and actions for

each episode
7 trajectory ID, dem ex, input grid, output grid, operations, selections ←

data

8 Add trajectory ID, dem ex, input grid, output grid to episode τdata

9 # Set the initial state
10 current grid0 ← input grid
11 clip grid0 ← None
12 t← 0
13 st ← (input grid, current grid0, clip grid0)

14 for (oprt, selt) ∈ (operations, selections) do
15 at ← (oprt, selt)
16 if at can be performed in st then
17 # Update state and episode information using ARCLE
18 current gridt+1, clip gridt+1, rt, terminatedt ← ARCLE.step(st, at)
19 Add st, at, rt, terminatedt to τdata
20 st+1 ← (input grid, current gridt+1, clip gridt+1)
21 t← t+ 1

22 else
23 Save wrong data for debugging
24 break

25 if “gold-standard” in trajectory ID and current grid ̸= output grid
then

26 Save wrong data for debugging

27 else
28 Save episode τdata
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B.5 Other SOLAR Examples

Figure B.3 illustrates two examples of episodes used in the experiment. Each episode

includes three random demonstration examples and a trajectory for a test example.

Demonstration Examples

Test Example with Trajectory

Simple task_gold-standard_64

FlipV Submit
Resize


Grid CopyO Paste

(a) Gold standard episode

Demonstration Examples

Test Example with Trajectory

Simple task_non-optimal_279

Resize

Grid FlipH

Rotate 
90

Rotate 
270

Rotate 
270

CopyO Paste

Rotate 
90 FlipV FlipH FlipH Submit

(b) Non-optimal episode

Figure B.3: SOLAR episode examples. (a) Gold standard episode that ideally reaches
the answer. (b) Non-optimal episode that is not ideal, but still reaches the answer state.
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Figure B.4 illustrates two different gold standard episodes. There might be multiple

gold standard trajectories in the same test example.

Demonstration Examples

Test Example with Trajectory 1

Task 1_gold-standard

Resize

Grid

Rotate 
270CopyO CopyOPaste

Paste FlipH FlipV Submit

Test Example with Trajectory 2

Resize

Grid

Rotate 
90

Rotate 
90

Rotate 
90

CopyO CopyO

CopyO

Paste

Paste

Paste

Submit

Figure B.4: Two different gold standard trajectories for Task 1 in Figure 1.1.

– 34 –


