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Abstract

This paper addresses the challenge of enhancing artificial intelligence reasoning capabilities, fo-
cusing on logicality within the Abstraction and Reasoning Corpus (ARC). Humans solve such visual
reasoning tasks based on their observations and hypotheses, and they can explain their solutions with
a proper reason. However, many previous approaches focused only on the grid transition and it is
not enough for AI to provide reasonable and human-like solutions. By considering the human process
of solving visual reasoning tasks, we have concluded that the thinking process is likely the abductive
reasoning process. Thus, we propose a novel framework that symbolically represents the observed
data into a knowledge graph and extracts core knowledge that can be used for solution generation.
This information limits the solution search space and helps provide a reasonable mid-process. Our
approach holds promise for improving AI performance on ARC tasks by effectively narrowing the

solution space and providing logical solutions grounded in core knowledge extraction.
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Chapter 1. Introduction

Artificial intelligence nowadays exhibits impressive problem-solving skills in many domains. Though
they provide valuable assistance, not all responses make sense due to the hallucination issue and lack
of logical stability. According to Pan Lu et al., especially within the category of mathematical rea-
soning, logical reasoning, and numeric commonsense, Al agents underperformed compared to other
areas such as scientific, statistical, and algebraic reasoning. Moreover, the ”puzzle test” and ”ab-
stract scene” tasks showed averagely the biggest performance gap between current AI models and
humans [1]. To enhance such weaknesses, various experiments have been conducted on logic and puz-
zle test datasets [2, 3, 4, 5]. Datasets corresponding to such categories that require complex logical
capabilities with visual images are called Visual Reasoning tasks.

As an IQ test is one of the representative measurements of human intelligence, Abstraction and
Reasoning Corpus (ARC) was invented by Francois Chollet to measure the intelligence of an AI [2].
The ARC dataset has 400 tasks in each training and evaluation set and each consists of multiple
numbers of example pairs and a test pair as shown in Figure 1.1. The task is to formulate a pattern
that applies to all the example pairs and then construct an answer with the given test input grid.
All tasks are created based on four core knowledge priors, which are 1) objectness, including object
cohesion, persistence, and its influence via contact, 2) goal-directedness, 3) numbers and counting, and
4) basic geometry and topology [2]. Due to these characteristics, solutions that have defined domain-
specific languages (DSL) have emerged. Unlike other AI techniques, two representative solutions have
utilized DSLs to make the essence of each not dissolved into a vector but preserved symbolically.
Moreover, the performances have resulted in 1st place in the Kaggle ARC solving competition and
ARCathon 2022 [6, 7]. Therefore, this research focuses on the symbolic representation of the ARC by
applying DSLs and synthesizing DSLs for the solution.

Since the transformer-based models are considered the best-performing Al, various researchers
have challenged solving ARC tasks with texts by providing additional descriptions [8], applying differ-
ent prompting skills [9], or estimating hypotheses between the input and output grids [10]. However,
such solutions can be improved in the following two ways, 1) by using a symbolic network to generate
solutions that are understandable from the human perspective, and 2) by following human thinking
processes to make solutions more reasonable and human-like. As humans explain their thoughts to
verify their understanding, it is necessary to check both the solution and the answer for reasoning
tasks. Thus, this research proposes a symbolic solver that returns understandable and reasonable
solutions.

In visual reasoning, humans establish hypotheses based on their observation [11]. Inductive
reasoning is well-known as a method to generate general solutions with sufficient observations, however,
finding the best solution under limited observations is appropriate with abductive reasoning. Due to
such property, the human thinking process of solving the ARC is more likely abductive reasoning.
In each pair of the ARC task, the transition between two grids could be represented with multiple
hypotheses including 1) what has changed, 2) how or how much it has changed, and 3) why it has

changed in such a way. Considering the reason for the transition is the key to this research. In
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Figure 1.1: Example ARC task. Solvers are supposed to formulate a pattern that applies to all the
given example pairs and then construct an answer with the given test input grid.
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Figure 1.1, four orange pixels appeared around the blue pixel. With only the first pair, it is hard
to guarantee a pattern for this task. Observing the second and third pairs provides more clues for
formulating a solution. After checking all pairs, the reason for the orange pixel pattern can now be
understood, ensuring that the target is blue. In other words, the color is the reason for the pattern
not the other fundamental properties like position or counts.

Many previous approaches missed such information and struggled to select a target object to
apply the pattern in the solution generation step. By emphasizing the weight of repeated features,
we propose an experiment that extracts core knowledge which are the candidate arguments for the
solution, and finds common transformations that utilize the extracted information to estimate the
result. Our paper’s contribution is two-fold: first, it delineates the conversion of ARC tasks into
knowledge graphs and the subsequent extraction of core knowledge from these graphs. Second, it

presents an abductive symbolic solver that utilizes the extracted core knowledge.



Chapter 2. Related Works

2.1 Domain Specific Languages (DSL)

In tackling the ARC challenge, some researchers have designed DSLs by referencing specific ARC
tasks and refining them after solving training tasks. While these DSLs prove their systematic stabil-
ity through successful example pair augmentation based on handcrafted solutions, their adaptability
to unseen tasks is limited [7, 12]. Recent studies have explored integrating neurodiversity-inspired
methods with computational intelligence through DSLs. One such system, the Visual Imagery Rea-
soning Language (VIMRL), simulates human mental imagery processes in neurodivergent individuals
but struggles to generalize across diverse ARC tasks [13]. Another study uses DreamCoder synthesis
to create symbolic abstractions from solved tasks and design a reasoning algorithm, however, this

approach heavily relies on previously solved tasks, making it less effective in novel situations [14].

2.2 Graph in ARC

The paper ” Abstract Reasoning with Graph Abstractions (ARGA)” proposed using a graph-based
representation to abstract input images into nodes and edges [15]. This method captures spatial and
relational information but struggles with the complexity of real-world visual reasoning tasks due to
its reliance on predefined graph structures and constraints, limiting its flexibility in diverse scenarios.
Lastly, the paper ”Mimicking Human Solutions with Object-Centric Decision Transformer” proposed
an object-construction algorithm by transforming the ARC grid into a graph to cluster the nodes
based on their distances [16]. Since the aim of the paper is limited to defining an object within only
one layer of the graph, the current research gained motivation to expand the graph space by detecting

multiple features.

2.3 Abductive Reasoning

Abductive reasoning is a type of logical inference aimed at determining the simplest and most
probable explanation from observations. It is used in fields like logistics, design synthesis, and visual
reasoning [17, 18, 19, 11]. Liang et al. introduced a task to evaluate machine intelligence in visual
scenarios through abductive reasoning. This approach, reflecting human cognition via Observation
(O) and Explanation (H), influenced our understanding of the ARC task [11].



Chapter 3. Method

The framework shown in Figure 3.1 is divided into two main stages: the conversion of ARC tasks
into knowledge graphs and the derivation of answers based on these graphs. The former involves the
formation of knowledge graphs using syntax DSLs and property DSLs through a program, with each
example pair resulting in data containing symbolic information in a four-layered knowledge graph,
shown in Figure 3.2. The latter stage is overseen by the symbolic ARC solver, comprising a specifier
responsible for extracting specific nodes/knowledge from the knowledge graph and a synthesizer that

utilizes this information to compose the answers.

Domain Specific Language (DSL)

Property DSL ‘Transformation DSL .
----» Grid Contents

Knowledge

Graph ARC
IConstruction
Program

ARC
Task

—> Knowledge —> Specifier K Colred > +—> Grid Size
Graph nowledge

Constraints
&
Conditions

——> Grid Colorset

Figure 3.1: Overall framework of Symbolic ARC Solver. To tackle a given ARC problem, the first
step involves generating a corresponding knowledge graph using a construction program based on
DSL. Then, the trained specifier extracts core knowledge using which refers to objects in the knowl-
edge graph that encompass specific conditions and constraints. Subsequently, the synthesizer applies
transformation DSLs to this core knowledge to predict the answer.

3.1 Structure of the ARC Knowledge Graph

The original ARC data is provided in the form of a two-dimensional array, where each element
of the array contains information corresponding to colors, ranging from 0 to 9. Therefore, It is
challenging for machines to understand and infer rules from this data due to its limited information
content. Thus, we propose a method to convert the 2D grid into a knowledge graph which captures
information perceived by humans when viewing ARC problems. The knowledge graph is formed
as units of one input-output example pair. A single knowledge graph consists of four layers, each
characterized by the attributes of the nodes included in it. When representing the original ARC
task’s example pairs as Task = {(I1,01), (I2,02), ..., (I, Oy,)} the corresponding knowledge graphs
are expressed as KG = {¢1,92..,gn}, where g, is further represented as {NodeList,, EdgeList,}.
Each NodeList, in g, is a data structure containing all nodes found in the four layers, and EdgeList,
is a data structure containing all edges found in the respective KG. The detailed description of each

of the four layers is as follows.
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Figure 3.2: An example of a very simple, almost backbone-structured knowledge graph of the first
pair of Figure 1.1. In practice, the knowledge graph generated by Algorithm 1 can contain up to
millions of edges. The graph consists of four layers, with edges freely drawn between layers as well as
between input and output by the property DSL. The edges highlighted in yellow represent connections
between two nodes at the same position. The other (black, blue, green) indicated edges signify that
nodes in the lower layer constitute nodes in the upper layer.

Pnode layer: This first layer converts each pixel into a single node named Pnode and captures

the relationships between these Pnodes, representing them as edges.

e Onode layer: This second layer contains nodes representing sets of one or more pixels forming
objects. It captures the relationships between objects as edges. Nodes in this layer, which is

named Onode, are connected to the Pnodes with edges.

e Gnode layer: This third layer represents the entire input or output grid as a single node named
Gnode. Nodes in this layer are connected to all nodes in the lower layers including the first and

second with edges.

e Vnode layer: This fourth layer combines the input and output grid into a single node. Each
example pair is ultimately represented by one fourth-layered Vnode, which is connected to two

Gnodes from the third layer through edges.

3.2 Domain Specific Language for Knowledge Graph Con-
struction and Symbolic ARC solver

3.2.1 Data Types

In the realm of domain-specific languages (DSLs), data types form the backbone of how informa-

tion is represented, manipulated, and interpreted. Table 3.1 provides an overview of the key data types



Table 3.1: Description of Data Types Used in creating DSLs

Data type Description

Pnode Represent a single pixel in the grid. Stores grid coordinates.

Onode Represent objects in the grid formed by a collection of Pnode

Gnode Represent whole grid holding Pnode and Onode as one big node.

Vnode Represent a pair of input and output into one node that holds two
Gnodes.

Xnode Represent any type of node above.

Edge Represent relationship between Pnode, Onode, Gnode, Vnode
(provides connection in the graph).

Color Represent a color of pixel by integer value.

NodelList Represent a list of nodes.

EdgeList Represent a list of edges.

Coordinate  Is used to represent coordinates which is a tuple of two integer
values.

ColorSet Is used to hold collections of color.

utilized in our DSL, each tailored to facilitate the unique requirements of nodes and their symbolic

relationships.

3.2.2 DSL Categories

DSLs are classified into three categories based on their purpose. DSLs that symbolize the proper-
ties of nodes are referred to as property DSLs and are primarily used to draw edges in the knowledge
graph. Refer to the Figure 3.3 to see what properties are defined. There are several conditions to draw
an edge, such as when two nodes have the same property, when a node has a specific property, or when
one node is contained within another node by some property. This category is further divided into
more specific categories: general and Pnode layer. The former applies to all layers, generating edges,
while the latter applies only to the Pnode layer. Transformation DSLs are utilized in the symbolic
ARC solver and play a role in predicting the answer by applying transformations to the given nodes.
Some DSLs belong to both property DSLs and transformation DSLs simultaneously, and the detailed
classification is shown in Figure 3.3. Syntax DSLs handle the syntactical elements of DSLs and form

the backbone of constructing the knowledge graph. They, in turn, are divided into DSLs for generating
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Figure 3.3: Overview of Domain-Specific Languages (DSLs) categorized into Transformations,

Pnode-layer, Syntax. The transformation DSLs are further divided into Transformation-S5 and
Transformation-S10 which are classified based on the section 4.1. Transformation-S5s are used in
synthesizer-5 and Transformation-S10s are used in synthesizer-10.



edges, creating nodes, and combining the two lists, ultimately resulting in the knowledge graph being
stored in the form of nodelist and edgelist. The pseudocode for constructing the knowledge graph

using this syntax is described in Algorithm 1.

Algorithm 1 Knowledge Graph Construction Program

Require: ARC Task
1: KG + empty set
2: for each pair in Task do
for each grid in pair do
node_list < Make_Pnode_list(grid)
node_list + Make_Onode_list(node_list)
node_list < Make_Gnode_list(node_list)
end for
# Now, we have two node_lists from input and output grid
node_list < Concat_list(node_list_input, node_list_input)
10: node_list < Make_Vnode_list(node_list)
11: for each Property-DSL do

12: edge_list «+ Make_Edge_list(node_list, Property_DSL)
13: end for

14: Add (node_list_pair, edge_list) to KG

15: end for

16: return KG

3.3 Symbolic ARC solver and Abductive Reasoning Learning

3.3.1 Solution Inference

To address ARC problems, the inference process of our proposed symbolic ARC solver is divided
into two main steps. First, core symbolic knowledge, implemented as a node form graph that can be
utilized to solve the problem is extracted from the knowledge graph generated beforehand. Second,
the extracted node is processed into a sequence of transformation DSLs to derive the correct answers.
In the first step, the specifier is responsible for traversing the knowledge graph and extracting core
knowledge (specific node) by considering some constraints. In the second step, the synthesizer takes

charge, synthesizing the path of DSLs to the answer from the extracted specific node.

3.3.2 Abductive Reasoning Learning

The symbolic ARC solver utilizes the concept of abductive reasoning for the learning stage.
Consisting of two trainable components, the synthesizer, and specifier, the learning process unfolds in
reverse order of inference, starting from the synthesizer. Starting from each node of the input graph
treated as a leaf and extending up to the root of the output grid, exploring all possible paths through
the search tree. The edges of the search tree are composed of transformation DSLs, originating
from the leaves and branching towards the root by applying each transformation DSL. The search
halts when the tree reaches a certain depth, at which point the paths connected to the root become
candidates for core knowledge used in the inference stage. At this stage, it identifies all possible
(node, path) pairs, where the path represents the sequence of transformation DSLs. Applying this
path to the nodes in the pair yields the desired output targeted during the process. An example of
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Figure 3.4: Training session of the synthesizer and its expanded search tree. The task is to find the
largest rectangle in the input and change the color to its interior single-pixel color. First, all nodes
generated from the input are placed at the top (leaf) of the search tree, with the output node at the
bottom (root), commented as Correct Answer in the figure. Then, transformation DSLs are applied
to draw paths. This example shows Synthesizer-10 targeting grid size and color set. Among the DSLs
used, get_height returns the height of the node, get_width returns the width, get_number_of_colorset
returns the number of colors other than the background, and Onode_count returns the number of
included objects. The linear(a, b) DSL performs the transformation axz + b on the previous value
x. get_union returns the union of colors between the previous node and the target node, while
get_identity_match returns the color set of the previous node. The path that reaches the root is
highlighted in red, forming a pair with the corresponding leaf.

the synthesizer’s training can be found in Figure 3.4, which corresponds to the setup in Section 4.1
and is an example of Synthesizer-10.

Next, the specifier is a component that extracts specific node(s), from a given knowledge graph. It
learns a method to uniquely identify nodes from the candidate pairs generated by the synthesizer. For
instance, if the node is specified as ”the largest object composed of adjacent pixels of the same color,”
the specifier generates a function that identifies the minimal features in the knowledge graph that
uniquely designate this node, returning them as constraints. The objective of this process is to traverse
the knowledge graph and find the smallest subset that satisfies the criteria of the given node, such as

%N

”same color,” ”adjacent pixels,” and "largest.” The example can be found in Figure 3.5. Consequently,
the constraint becomes a function that extracts node(s) in the knowledge graph, ultimately generating
a hypothesis in the form of a pair (constraints, path). This hypothesis can be applied to all knowledge

graphs of the same task by the

path(constraints(KG)) = prediction
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Figure 3.5: The figure demonstrates the learning process of the specifier for extracting the O; node.
Here, G represents Gnode, O,, represents Onodes, P, represents Pnodes, e, represents edges, and f,
represents features. In the knowledge graph on the left, the specifier identifies unique conditions (e,
and f, information) that can uniquely specify the O; node, bundles these conditions into constraints,
and returns them.

returning the predicted answer.

After obtaining a set of possible hypotheses from the observations of the first example pair, the
final solution is adopted through the process of evaluating whether these hypotheses can consistently
explain other observations. Due to the nature of ARC problems, observations are highly limited by
the number of example pairs and exhibit characteristics of few-shot learning. By applying hypotheses
to the given pairs and iteratively selecting only those hypotheses that correctly derive the answers,
the remaining hypotheses are adopted as the final solution for this task. This solution ensures that

our observations are well explained.



Chapter 4. Experiment and Results

The primary objective of this experiment is to leverage a knowledge graph (KG) and domain-
specific language (DSL) to solve tasks within the Abstraction and Reasoning Corpus (ARC). Below
are the hypotheses raised in this paper:

e H1: The knowledge graphs effectively encapsulate symbolic knowledge, facilitating human-like

problem-solving and enhancing performance.

e H2: The number of transformation DSLs is positively correlated with the performance of the

symbolic ARC solver.

4.1 Experimental Setup

For the evaluation of the DSL-based symbolic ARC solver and knowledge graphs, a small set of
simple and basic transformation DSLs was applied. The answers (outputs) of ARC problems consist
of three elements: 1) the size of the grid, 2) the color set of the grid, and 3) the contents of the grid.
Though all three are crucial, predicting and modifying the target values of the first two hold significant
importance as they represent steps inherent in human problem-solving of ARC tasks. Therefore, we
prioritized these aspects in our experimental setup, focusing primarily on them and enabling the
utilization of minimal and straightforward transformation DSLs during the synthesis process. For the
color set, all colors appearing in the correct grid must be matched with the predicted value to be
considered as the correct answer, while for the grid’s size, separate integer values for height and width

were predicted. In the generation of the knowledge graph, a total of 22 property DSLs were employed.

4.2 Result

4.2.1 Comparison of Solver Performance with and without the Use of

Knowledge Graph

Figure 4.1 presents the accuracy scores of a solver’s performance on different target values, com-
paring the use of a knowledge graph against not using one. For each target on the x-axis, the solver’s
accuracy is consistently higher when utilizing the knowledge graph. In particular, when not utilizing
the knowledge graph, a significant decrease in the prediction performance of C and HWC can be
observed. This indicates the crucial role of symbolic information contained in the knowledge graph
in predicting the color set. The solver achieves nearly perfect accuracy for the H, W, and HW with
the knowledge graph. These results confirm that the use of knowledge graphs effectively enhances
performance, supporting H1 by demonstrating their capability to encapsulate symbolic knowledge

and facilitate human-like problem-solving.

— 10 —
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Figure 4.1: Accuracy score comparison of solver with and without utilizing knowledge graph on each
target. Here, "KG” refers to the knowledge graph. The targets assessed are Height (H), Width (W),
Color (C), and their combinations: Height and Width (HW), and Height, Width, and Color (HWC).

4.2.2 Differences in Performance by Size of Synthesizer

To explore the relationship between the number of transformation DSLs and accuracy, two syn-
thesizers of different sizes were prepared, both with a depth limit of 2 for the search tree. The
results show that Synthesizer-10 consistently achieves higher accuracy across all categories compared
to Synthesizer-5. Notably, in the HWC category, Synthesizer-10 outperforms Synthesizer-5 by over
three times. These findings support H2, confirming that the number of transformation DSLs is pos-
itively correlated with the performance of the symbolic ARC solver. Additionally, they suggest that
employing more sophisticated and diverse transformation DSLs enhances the model’s accuracy and

its potential to predict content.

Table 4.1: The comparison presented here delves into the accuracy scores of solvers utilizing different
synthesizer sizes. Synthesizer-10, employing 10 transformation DSLs, is contrasted with Synthesizer-
5, which utilizes only 5. For details on DSL adopted by each synthesizer, see Figure 3.3.

Synthesizer-10 Synthesizer-5
Correct Incorrect Accuracy (%) Correct Incorrect Accuracy (%)
H 366 34 91.5 209 191 52.25
W 365 35 91.25 203 197 50.75
C 299 101 74.75 176 224 44
HwW 362 38 90.5 197 203 49.25
HWC 266 134 66.5 84 316 21

— 11 —



Chapter 5. Conclusion

We introduced a framework for ARC problem-solving, integrating knowledge graph conversion
and abductive reasoning learning with a symbolic ARC Solver. This approach, inspired by human
thought processes, offers systematic, interpretable, and scalable solutions. Leveraging knowledge
graphs, we decode ARC tasks symbolically, providing crucial insights for inferring problem rules.
Impressively, even with a naive synthesizer using limited transformation DSLs, our framework achieves
high accuracy in predicting grid sizes (90.5%) and color sets (74.5%). Furthermore, as DSLs increase,

we anticipate significant performance improvement, potentially extending to grid content prediction.
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