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Abstract

The prior knowledge required to solve ARC is diverse. Therefore, for transformer-based models
to learn this, such knowledge must be provided in the form of inductive biases. LatFormer is a
model that has learned ARC problems by incorporating prior knowledge about ’grid transformations’
as inductive biases into the transformer model. In this paper, we developed and introduced color
attention into LatFormer, which allows the model to recognize color transformations by providing
color information as an inductive bias. Color attention works by attending to the input and its colors
before the masked self-attention occurs, calculating to what extent the color transformation will be
reflected. An experiment was conducted to train and compare the performance of both the original
LatFormer and the LatFormer with integrated color attention, using a dataset augmented according

to the rules of color-related ARC problems.
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Chapter 1. Introduction

ARC (Abstract and Reasoning Corpus)[1] is a dataset designed by Francois Chollet to measure
the generalization ability of artificial intelligence. In this dataset, each problem has a specific rule
between the input and output [Figure 1.1]. Solving a problem in the ARC dataset means using the
rule apparent in the task example pairs of that problem to derive an appropriate output from the input
presented in the test. Since each problem uses different rules, solving all problems in ARC requires
various categories of problem-solving abilities. Additionally, the ARC dataset provides about two to
five task examples per problem. Therefore, models that need a sufficient amount of data during the

training process cannot solve all the problems in the ARC dataset.

&9 Of Al HlAE

ue 2 3%1::\ 2y gy
ﬁ .

Figure 1.1: An example of an ARC problem. ARC is a dataset where the rule is inferred based on
the input and output of task examples, and then the output for the input of the test is predicted.

LatFormer|[2] is a model proposed for solving ARC problems, providing an inductive bias for a
specific category of domain-specific language called ’grid transformations’ during the training process
of Transformers[3]. LatFormer utilizes domain-specific languages like movement, rotation, and flip-
ping. However, to fully learn the ARC dataset, additional inductive biases that need to be obtained
from outside the dataset are necessary.

In this paper, we introduce color attention into LatFormer, providing color information as an
inductive bias to the model. Color attention is applied to pixel locations requiring color transformation,
providing an inductive bias. This research is significant as it goes beyond the conventional Transformer
training methods[4], which rely solely on basic color information and prompts, by introducing color
attention into the Transformer model. This method of color attention can also be applied to tasks

performed in computer vision.



Chapter 2. Background and Related work

2.1 LatFormer Architecture

2.1.1 Infusing Grid Transformation Prior Knowledge with Masked Self-
Attention

For instance, on a Cartesian coordinate plane, if we consider four integer grid points (1, 1), (3, 2),
(2, 3), and (5, 5), moving these points simultaneously by 3 units in both x and y directions results in
new coordinates (4, 4), (6, 5), (5, 6), and (8, 8). Similarly, rotating the grid points by multiples of 90
degrees or mirroring them along the x or y axes also results in grid points that are integer coordinates.
Such movements, rotations, and inversions, which always result in integer coordinates for the grid
points, are referred to as ’grid transformations’.

ARC can be seen as a problem of inferring colors painted on grid points of a square grid, with a
maximum size of 30x30. Among these, there are ARC problems that require the use of grid transforma-
tions, such as the rotation and inversion shown in [Figure 1.1]. Therefore, using grid transformations
as inductive biases in model design can solve problems like those shown in [Figure 1.1]. LatFormer[2]
utilizes these grid transformations as inductive biases for masked self-attention. Each mask is gen-
erated according to the input of the Transformer block, and this will be further explained in section
2.1.2. The outputted masks represent grid transformations such as movement, rotation, and inversion.

To understand the process of applying these masks, let’s examine Scaled dot-product Attention[3].
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In this context, when using M as the output for the mask, the presence of - makes it non-optimizable

MaskAtt(Q, K, V; M) = softmaz( + M)V (2.1)

via backpropagation. Instead, to make M differentiable, the following formula is used, applying

element-wise multiplication to the matrix after softmax, thereby allowing masking:
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Here, @ denotes element-wise multiplication, M is a matrix with values between 0 and 1, and scale()

MaskAtt(Q, K,V; M) = scale(softmax( )O M)V (2.2)

is a scaling function that adjusts the sum of each row altered due to masking back to 1. To facilitate
understanding, let’s assume that Q=K=V=X are column vectors and that each row of M contains

only one 1 with the rest being 0s. Substituting and simplifying the expression, we get:
MaskAtt(X; M) = MX (2.3)

If M represents matrices for movement, inversion, and rotation, then the result of the masked self-
attention will be the vector X transformed by these operations. An example of M transforming a 5x5
input grid according to grid transformations is illustrated in [Figure 2.1]. The 5x5 grid is converted

into a 25x1 vector and then multiplied by the mask from [Figure 2.1] as equation (2.3).
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Figure 2.1: Example masks for rotating a 5x5 grid. The colors represent different values: white for 1,
grey for 0.5, and black for 0. In each case, the masks illustrate (a) a one-step horizontal and vertical
movement, (b) a 90-degree counterclockwise rotation, and (c) a mixture of 0-degree and 90-degree
rotations.

2.1.2 The Mask Composition Method of the Lattice Mask Expert

In LatFormer, the masks are generated by a Lattice Mask Expert present in each Transformer
block. The role of the Expert is to receive input data from each block and create masks for use in
masked self-attention. The outputted masks, as shown in [Figure 2.1], contain detailed information
about the types of grid transformations (movement, rotation, inversion) needed to solve the given
problem, including the displacement of movement, the number of rotations, and the direction of
inversion. The detailed information about the grid transformations is determined through the following
process.

My =af(My) + (1 — )M, (2.4)

M, represents the previous mask, f(M;) is the mask after applying a specific grid transformation, and
M, is the output mask. The real number «, ranging between 0 and 1, is used to control the degree
of mixing of grid transformations and is output through a feedforward neural network that receives
input from each block. For example, let’s assume {() adds a 90-degree rotation grid transformation to
the mask. If M, represents a mask that performs a 0-degree rotation, then (M) will be a mask for a
90-degree rotation, and M;; will be a mask that mixes 0-degree (M) and 90-degree (f(M;)) rotations
based on a. By repeating this for My o, M3, etc., masks for 0 to 3 rotations can be generated. In
this case, the feedforward neural network outputs a total of three o values to determine the required
number of rotations for the input matrix. This can be applied to movement and inversion as well,
and by mixing masks using each symmetry element in a weighted sum manner similar to equation
(2.4), the mask for masked self-attention is completed. In actual implementation, « is output as a real

number between 0 and 1, allowing for a mixture of rotated and unrotated results, as seen in [Figure

2.1] (c).



Chapter 3. Methodology

3.1 Color Attention

3.1.1 The Reason for Introducing Color Attention

LatFormer learns ARC task examples by providing inductive biases for grid transformations via
masked self-attention. However, these inductive biases for grid transformations alone are insufficient
to solve all problems in the ARC dataset. Therefore, to expand the range of problems that this model
can solve, additional inductive biases, along with grid transformations, are necessary. Among these,
this paper introduces color attention as a new method to provide the model with color information as
an inductive bias, which is essential for solving ARC problems. It is expected that this color attention
will enable the model to solve complex color-related problems that were previously unsolvable by

conventional models.
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Figure 3.1: Schematic diagram of a Transformer Block with Added Color Attention



3.1.2 The Working Mechanism of Color Attention

To introduce color attention into the LatFormer model, a matrix [0, 1, ..., 9] is used as part of the
model’s input along with the task example input. Let’s call this matrix the color matrix. Both inputs
go through the same embedding process and enter the transformer block for masked self-attention. As
a result, the color matrix contains embedding information for each color based on the task example
input.

Color attention occurs before V', corresponding to the task example input, is multiplied with
masked self-attention. The formula for color attention is as follows, where C}, and C, represent the

transformed values of the color matrix for attention purposes.

ColorAttention(V, Cy, Cy) = softmaz(VCy,T)C, (3.1)

The result of this formula is the attention value for each color from 0 to 9 at each pixel of V. Similar
to self-attention, this process is learned, recognizing which color is closest to the correct answer for
each pixel of V and assigning weights accordingly. Then, to induce color change in the input of the
task example, P is calculated by multiplying V and the result of the color attention with weights
and 1-3, respectively, and then adding them. When the result of color attention is denoted as C A, P
is as follows.

P =(BV + (1 - B)CA) (3.2)

B is a hyperparameter, which in this experiment is set to 0.9. The final output of the multi-head
attention with added color attention is as follows.
QK"
Output(Q, K,V; M, P) = scale(softmaz(

Vd

)© M)P (3.3)



Chapter 4. Experiment

In this paper, we compared the performance of the LatFormer model with added color attention
against the original LatFormer, particularly focusing on how much better the modified model performs

on complex color problems.

4.1 Experimental Setup

R oA (gedfcgan) 8 WA (pcadddbe)

Figure 4.1: These are task examples from the ARC dataset used in the experiment. On the left is
problem number 9edfc990.json, and on the right is problem number Oca9ddb6.json.

In the experiment, the LatFormer architecture used was identical to the structure described in
paper [2]. For parts of the transformer structure not additionally elaborated in the paper, the method
used in ViT [5] was followed. Both the LatFormer model used in the experiment and the model with
color attention converted the pixels of the task example inputs into numbers from 0 to 9 according
to color before using them as inputs. The ARC problems used for the comparative experiment were
9edfc990 and 0ca9ddb6 from [Figure 4.1], which require prior knowledge about colors. To monitor the
training process of both models, for each problem, 51,000 input-output pairs of size 10X10, sharing the
same rule as the task example input-output, were generated. Of these, 50,000 were used as training

data and 1,000 as test data. Four different random seeds were used for training the models.
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4.2 Evaluation Metrics

In this experiment, Cross Entropy was used as the loss function for each of the 10X10 pixels. As
a performance metric, accuracy was used, where a predicted 10X10 pixel set was considered correct if

it perfectly matched the answer.

4.3 Experimental Analysis

The experimental results can be seen in [Table 1], where the results of experiments with each
problem’s dataset were analyzed.

For the dataset of 0ca9ddb6, both the LatFormer with color attention and the original LatFormer
achieved 100% accuracy at the end of training, regardless of the random seed. This suggests that for
problems utilizing simple color information, if sufficient data is provided for the training of transformer
models, effective learning is possible even without additional biases.

In the dataset for 9edfc990, the average performance of the LatFormer with added color attention
was 85.77%, with a standard deviation of 9.04. In contrast, the average performance of the original
LatFormer was 88.56%, with a standard deviation of 5.75. When setting the null hypothesis that
the model with added color attention performs better than the original LatFormer, the p-value was
calculated to be 0.70. Therefore, at a 95% confidence level, the null hypothesis is rejected, indicating
that there is insufficient evidence to conclude that the addition of color attention improves the learning

performance of LatFormer.

Table 4.1: The table represents the accuracy at the end of training for both LatFormer and LatFormer
with color attention, within a 95% confidence interval. For the task 0ca9ddb6.json, both models showed
a performance of 100%. For the task 9edfc990.json, LatFormer showed an approximate performance of
88.56% =+ 5.63%, whereas the LatFormer with added color attention showed about 85.73% =+ 8.87%.

Latlormer Latlormer + A=} ==l
Dcadddbe.json 100% 100%
Hedfcd90.json 88.56+5.63% B5.T3+8.87%




Chapter 5. Conclusions and Forthcoming

Research

This paper proposed the introduction of color attention to expand the range of ARC dataset
problems that LatFormer can solve, enabling it to learn prior knowledge about color information.
However, it was not possible to confirm whether the addition of color attention to LatFormer resulted
in a significant performance improvement over the original LatFormer. Future research will likely
include additional experiments to demonstrate the utility of color attention. It is also anticipated that
development will focus on models that can learn multiple types of prior knowledge simultaneously, by

grouping together problems that share the same prior knowledge for the model to learn.
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Summary

Inductive bias provision for color attention learning

ARCE 27] 98] Bash Al 241 cropste. 7o) EdAns A Rdo] o]
A= A A|40] ' WaFo] Gz AT Holof et LatFormerks ‘12| ekl et A4 #1412
Edsme 29 Ay WO Yol ARC BAS sh4e Bulolth. 2 =Fol A LatFormere] A7)

HRE g WO AT A RS AN 4 A she AR WAL A ZYHk. A
offl e izl A7)0l |lo] o 2ojx]7] A Ueat AAE ofeste] AA WHS o Jr MY
A ARFSHE BAOR BT A2 LatFormerst A7) o]l o] EFH LatFormerS tho 2
Mo ek ARC BAIZ o] 9 S79 Hlole A shsohy A2 vlmehs 49e Sagc)

— 10 —



& A o2

_/'K_
AEAUL o] 9oE A Eee

— 11 —



T
or

¥l

g

0l

2001 119 2¢

(o]
R

AOH

SFA R 365-10

=
[}

K-

2017. 3. - 2020. 2.

-
o

2020. 2. - 2024. 2.

— 12 —



