
Thesis for Bachelor’s Degree

The Abstraction and Reasoning Corpus Learning

Environment for Reinforcement Learning

Hosung Lee

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

2025

학사학위논문

추상화와 추론을 위한 강화학습 환경

이호성

전 기 전 자 컴 퓨 터 공 학 부

광 주 과 학 기 술 원

2025

The Abstraction and Reasoning Corpus Learning
Environment for Reinforcement Learning

Advisor: Sundong Kim

by

Hosung Lee

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

A thesis submitted to the faculty of the Gwangju Institute of Science

and Technology in partial fulfillment of the requirements for the degree of

Bachelor of Science in the Electrical Engineering and Computer Science

Concentration

Gwangju, Republic of Korea

Dec 6, 2024

Approved by

Professor Sundong Kim

Committee Chair

The Abstraction and Reasoning Corpus Learning

Environment for Reinforcement Learning

Hosung Lee

Accepted in partial fulfillment of the requirements for

the degree of Bachelor of Science

Dec 6, 2024

Committee Chair

Prof. Sundong Kim

Committee Member

Prof. Kangil Kim

Dedicated to my family.

BS/EC
20215169

Hosung Lee. The Abstraction and Reasoning Corpus Learning Environ-
ment for Reinforcement Learning. School of Electrical Engineering and
Computer Science. 2025. 30p. Advisor: Prof. Sundong Kim.

Abstract

This paper introduces ARCLE, an environment designed to facilitate reinforcement

learning research on the Abstraction and Reasoning Corpus (ARC). Addressing this

inductive reasoning benchmark with reinforcement learning presents these challenges:

a vast action space, a hard-to-reach goal, and various tasks. ARCLE offers structured

state space and action space for ARC. ARCLE’s action space consists of pixel-based

and object-oriented operations that transform state space, which keeps states of edi-

tions of the input grid of each ARC task’s demonstration pair. We demonstrate that

an agent with proximal policy optimization (PPO) is capable of learning individual

tasks through ARCLE. Adopting non-factorial policies and auxiliary losses led to per-

formance enhancements, effectively mitigating issues on huge action space and goal

attainment. Based on these insights, we propose several research directions and moti-

vations for using ARCLE, including MAML, GFlowNets, and World Models.

©2025

Hosung Lee

ALL RIGHTS RESERVED

– i –

BS/EC
20215169

이호성.추상화와추론을위한강화학습환경.전기전자컴퓨터공학부. 2025.
30p. 지도교수: 김선동.

국 문 요 약

본 논문에서는 Abstraction and Reasoning Corpus (ARC) 해결에 강화학습을 활용

하기 위한 환경인 ARCLE을 고안한다. 인공지능의 귀납 추론 능력 벤치마크인 ARC를

강화학습의 방법론으로 접근하는 것은, 넓은 행동 공간에서의 문제해결, 도달하기 어려

운 목표의 달성과 다중 작업 학습과 같은 강화학습의 주요 문제들을 제시한다. ARCLE

에는 ARC의예시입출력쌍의입력그리드를편집하는것으로표현되는상태공간과,이

상태를 조작하는 픽셀 기반 및 오브젝트 기반 행동 공간이 정의되어 있다. 본 논문에서

구현하는 proximal policy optimization (PPO) 기반 강화학습 에이전트는 ARCLE 환

경에서 ARC에 포함된 문제를 개별적으로 학습할 수 있음을 확인하였다. 또한, 구현한

강화학습 에이전트에 non-factorial 정책과 보조 손실함수를 적용함으로써 성능을 향상

시켰으며, 이에따라 넓은 행동 공간과 목표 달성 문제를 효과적으로 해결할 수 있었다.

ARCLE과구현한강화학습에이전트에서얻은통찰에기반하여,본논문에서는 ARCLE

을 활용한 앞으로의 연구 방향과 질문을 제기한다.

©2025

이 호 성

ALL RIGHTS RESERVED

– ii –

Contents

Abstract (English) i

Abstract (Korean) ii

List of Contents iii

List of Tables v

List of Figures vi

1 Introduction 1

2 Related Works 3

2.1 Solving ARC . 3

2.2 Related RL Environments . 3

3 ARCLE: ARC Learning Environment 5

3.1 Framework of ARCLE . 5

3.2 Actions . 6

3.3 States and Observations . 8

3.4 Two-Layer Mechanism for Object-Oriented Actions 9

3.5 Rewards . 10

3.6 Source Code and Sample Usage . 11

4 ARCLE Benchmarks 13

4.1 Solving ARC with a Given Answer . 13

4.1.1 Learning better representation through auxiliary loss functions . 15

4.1.2 Non-factorizable policy architecture 17

4.1.3 ARCLE as a Continual RL Environment 18

4.2 Research Directions . 19

4.2.1 Meta-RL for Enhanced Reasoning Skills 19

4.2.2 Generative Models as Surrogates for Reasoning 20

4.2.3 Model-Based RL for Abstraction Skills 20

4.2.4 Further Research Questions . 21

5 Conclusion 23

– iii –

References 24

A Object-Oriented ARC (O2ARC) Web Interface 31

B Abbreviations 33

Acknowledgements 34

– iv –

List of Tables

3.1 Variables in action and state spaces and their definition. 7

– v –

List of Figures

1.1 Four different ARC tasks are presented, each requiring analysis through

its provided demonstration pairs. The identified rule from this analysis

must then be applied to a test input grid to produce the answer (test

output) grid, which is currently blurred for demonstration purposes.

Task 1 modifies all gray grids within a row to match the color found in

the far-left column of that same row. Task 2 relocates four identical cyan

objects appropriately, each no larger than 2×2 in size. Task 3 determines

the color of the topmost line in a stack of overlapping horizontal and

vertical lines, and outputs a single pixel of this color. 1

3.1 Framework of ARCLE. The package consists of components: envs, ac-

tions, loaders, and wrappers. 5

3.2 The state transition process of ARCLE. 6

3.3 Every operation assigned in O2ARCEnv (version 0.2.5). The categories

of operations (left), available operations (middle), and application ex-

amples of operations (right) are shown. 8

3.4 The edge case with consecutive Move actions without two-layer mechanism. 9

3.5 The edge case with serial two-layer mechanism Move actions. 10

4.1 Performance of agents when various auxiliary losses are additionally used

are shown. The experiment is repeated four times, and the shaded re-

gions denote 95% confidence intervals. 15

– vi –

4.2 Performance of agents when equipped with different policy architectures.

The experiment is repeated 4 times, and the shaded regions denote 95%

confidence intervals. 16

4.3 Performance of agents on continual RL task when equipped with differ-

ent policy architectures. The experiment is repeated 4 times, and the

shaded regions denote 95% confidence intervals. 18

A.1 O2ARC Solve page. The left side shows demo input and output grid

pairs, the center demonstrates the test input grid, and the right side

consists of the result grid and available actions. 32

– vii –

Chapter 1

Introduction

This thesis introduces ARCLE (ARC Learning Environment) as a reinforcement learn-

ing (RL) environment designed for the Abstraction and Reasoning Challenge (ARC)

benchmark [1]. This benchmark assesses agents’ ability to infer rules from given grid

pairs and predict the outcome for a test grid, as illustrated in Figure 1.1. ARC is de-

signed to test abstraction and reasoning skills, making it a touch benchmark within

the domain. Despite various attempts to conquer ARC’s complexities through pro-

gram synthesis and reasoning using large language models, RL-based approaches are

surprisingly rare (Section 2.1). This scarcity is presumed by the lack of a dedicated

RL environment tailored for ARC. To fill this gap, ARCLE based on Gymnasium [2]

is created to tackle the benchmark.

Figure 1.1: Four different ARC tasks are presented, each requiring analysis through
its provided demonstration pairs. The identified rule from this analysis must then be
applied to a test input grid to produce the answer (test output) grid, which is currently
blurred for demonstration purposes. Task 1 modifies all gray grids within a row to match
the color found in the far-left column of that same row. Task 2 relocates four identical
cyan objects appropriately, each no larger than 2×2 in size. Task 3 determines the color
of the topmost line in a stack of overlapping horizontal and vertical lines, and outputs
a single pixel of this color.

– 1 –

From RL’s standpoint, ARC is considered highly challenging. The typical difficulties

include (1) a vast action space, (2) a hard-to-reach goal, and (3) a variety of tasks.

While other RL benchmarks (e.g., robotics, financial trading, recommender systems,

video games) might feature one of these challenges, ARC encompasses all, showing its

difficulty. ARCLE is designed to help researchers navigate these challenges, offering a

unique testbed for RL strategies.

Vast action space ARC stands out with its vast action space by allowing a variety

of actions such as coloring, moving, rotating, or flipping pixels. This feature creates

a large set of possibilities, complicating the development of optimal strategies for RL

agents. Such a vast action space demands innovative approaches to navigate effectively.

Hard-to-reach goal ARC tasks are uniquely challenging because success is mea-

sured by the ability to replicate complex grid patterns accurately, not by reaching a

physical location or endpoint. This requires a deep understanding of the task rules and

an ability to apply them precisely. Designing effective reward systems is particularly

challenging in this context, as progress is not easily quantified.

Variety of tasks ARC’s wide array of tasks necessitates broad generalization, a stark

contrast to benchmarks like Atari, which focus on mastering single games.1 This diver-

sity calls for adaptive and varied strategies, highlighting ARC’s demand for advanced

RL methods.

ARCLE is an environment that helps overcome the challenges of ARC and paves

new pathways for AI research, seamlessly linking abstract reasoning in ARC with the

adaptability in RL. Our initial experiments highlight the capability of RL to address

specific tasks within ARC, indicating the potential necessity for advanced techniques

such as meta-RL, generative models, or model-based RL algorithms. Thus, ARCLE

stands out as a platform for testing RL solutions, prompting an in-depth exploration

of the challenges ARC presents.

1Atari benchmarks hosts 57 games, each with its goal. Solutions such as Rainbow DQN [3], R2D2 [4],
MuZero [5], and Agent57 [6] focus on mastering single games.

– 2 –

Chapter 2

Related Works

2.1 Solving ARC

Since the unveiling of the ARC [1], approaches ranging from the development

of similar benchmarks [7, 8, 9] to domain-specific languages and program synthe-

sis [10, 11, 12, 13, 14, 15] have been explored to extend its applicability and enhance

learning strategies. These efforts have deepened our understanding of ARC’s challenges,

highlighting the complexity of devising comprehensive solutions. The recent shift to-

wards leveraging Large Language Models (LLMs), incorporating strategies from natural

language processing to detailed task context integration [16, 17, 18, 19, 20], underscores

LLMs’ potential in addressing ARC’s intricacies.

However, the performance of research on the ARC utilizing program synthesis

and LLMs has not fully met expectations, often due to its logical flaw [20]. This has

prompted a pivot towards reinforcement learning as a novel approach, albeit its applica-

tion to ARC has been limited. Notable attempts include using RL strategies in program

synthesis [21] and exploring imitation learning [22]. The introduction of ARCLE opens

up new possibilities for advancing research on the ARC using RL.

2.2 Related RL Environments

Among the myriad RL environments, those featuring a vast action space similar to

ARCLE’s are prominently observed in game-based settings, such as PySC2 [23], where

the diversity of actions, determined by mouse click locations, mirrors the flexible action

format in ARC. Similarly, environments designed for recommendation systems (e.g.,

RecSim, RecoGym) and complex multi-step planning tasks (e.g., Super Mario Bros [24],

NLE [25]) may not exhibit wide action spaces at each state but encapsulate the chal-

lenge of hard-to-reach goal through the necessity of sequential decision-making to

– 3 –

achieve success. In parallel, the breadth of tasks within ARCLE resonates with the

diverse objectives found in robotics environments like Meta-World [26], RLBench [27],

and CALVIN [28], underscoring the complexity and variety of tasks that ARCLE

introduces to RL research.

– 4 –

Chapter 3

ARCLE: ARC Learning Environment

3.1 Framework of ARCLE

Figure 3.1: Framework of ARCLE. The package consists of components: envs, actions,
loaders, and wrappers.

ARCLE is a reinforcement learning (RL) environment package, implemented in

Gymnasium [2], designed for RL approaches on Abstraction and Reasoning Corpus

(ARC). RL agents on the ARCLE environments learn to solve tasks by selecting ac-

tions to edit the grid (to be submitted) to the environment state. As Figure 3.1 illus-

trates, ARCLE comprises three main components: envs, loaders, actions, and aux-

iliary wrappers which modify the environment’s action or state space. The following

explanation is based on the terms in Table 3.1.

The envs component consists of a base class of ARCLE environments, and its three

derivatives. AbstractARCEnv inherits Gymnasium’s Env class to provide reinforcement

learning environment features and defines the ARC-specific structure of action and

state space and user-definable methods. Its implementations, O2ARCEnv, ARCEnv and

RawARCEnv provide embodied action and observation spaces. O2ARCEnv constructs the

state and action space according to the O2ARC interface (See Appendix A), and

– 5 –

likewise, ARCEnv offers the testing web interface developed by François Chollet [29].

RawARCEnv restricts the action space to color modifications or grid size changes, pro-

viding a more constrained and monotonic learning environment.

Next, the loaders component provides functionalities to supply the ARC dataset

to ARCLE environments. This component comprises the base Loader class defining

interface requirements to ARCLE environments and their implementations. ARCLoader

feeds the ARC dataset to any ARCLE environment and defines how the ARC dataset

should be parsed from files and how the parsed dataset should be picked. Likewise,

to load a similar dataset to the ARC, one can inherit the Loader class and specify

how to parse and sample. ARCLE package provides the MiniARCLoader which loads

Mini-ARC dataset [8] upon an ARCLE environment, as an example usage of Loader

class.

Last, actions component includes a variety of functions capable of changing en-

vironment state, called operation. Each environment in ARCLE contains several op-

erations to be used in an environment by agents on the environment. Since ARCLE

currently implemented actions on the O2ARC interface, it contains more actions (e.g.,

Move, Rotate, Flip) than the original ARC testing interface [29].

This thesis focuses on explaining O2ARCEnv in the following sections, which encom-

passes most operations by ARCLE.

Figure 3.2: The state transition process of ARCLE.

3.2 Actions

Actions in ARCLE are defined to enable editing of the output grid for a given task,

consisting of operation and selection. operation represents an integer that specifies

– 6 –

Table 3.1: Variables in action and state spaces and their definition.

Variable Space Name Definition

Action operation Integer index representing edit method of environment state (e.g., grid, clip)
selection Binary mask that specifies where a operation to be applied

State input Input grid of demonstration pair or test pair
input dim Dimension (height, width) of input
grid Editable output grid of demonstration pair or test pair
grid dim Dimension (height, width) of grid
clip Clipboard grid
clip dim Dimension (height, width) of clip

State selected Binary array which represents currently selecting pixels for object-oriented operations
(object states) active Boolean variable of whether last operation was an object-oriented operation

object Backed-up pixels of specified pixels of grid for object-oriented operations
object sel Binary mask of exact shape which pixels of object that user has specified
object dim Dimension (height, width) of bounding box of object and object sel

object pos Left-top position of bounding box of obejct on the grid

rotation parity Binary value for consistency over serial rotations
background Pixels remaining in the grid excluding

Answer answer Answer grid of test input grid
(Hidden to agents) answer dim Dimension (height, width) of answer grid

the method of editing (functions contained in the actions component in Figure 3.1),

and selection is a binary mask that denotes the area of the grid affected by the edit.

By defining ARCLE’s actions through operation and selection as illustrated

by the action in the middle of Figure 3.2, ARCLE standardized various types of ac-

tions within the same structure. Notably, the actions in ARCLE can affect a single

pixel, contiguous multiple pixels, or even non-contiguous pixels, accommodating these

possibilities through employing the binary mask selection. Furthermore, by separating

operation and selection, it accommodates the possibility of determining selection

conditioned by the chosen operation autoregressively.

Currently, 35 operations are available in O2ARCEnv (Figure 3.3). When an agent

specifies the operation index, the corresponding one is executed. Specifically, operation

indices 0–9 represent to Color the selected pixels (by selection) with one color among

the ten colors used in ARC, while 10–19 denote a Flood Fill based on Depth-First

Search (DFS) in the selected pixels. Object-oriented operations not present in the

original ARC testing interface [29], such as Move, Rotate, and Flip, are assigned to 20–

23 (up, down, right, left), 24–25 (counterclockwise, clockwise), and 26–27 (horizontal,

vertical), respectively. Additionally, 28–30 correspond to Copy and Paste, and 31–34 are

assigned to operations that cause breaking changes in the states like duplicating the test

– 7 –

Figure 3.3: Every operation assigned in O2ARCEnv (version 0.2.5). The categories of
operations (left), available operations (middle), and application examples of operations
(right) are shown.

input (CopyInput), clearing the grid (ResetGrid), changing the grid size (ResizeGrid),

and submitting (Submit). Subclassing the environments allows customizing available

operations by adding or removing them in the same format.

3.3 States and Observations

All environments included in ARCLE are designed with the assumption to be

Markov Decision Processes (MDP). Therefore, every parameter used in changing the

environment’s state is given to agents in the environment, so observations and states

can be considered equivalent. The basic state space of an environment within ARCLE

consists of the input and grid. Input represents the test input grid of an ARC task,

so it is fixed unless a new task is assigned to an environment. Grid is initially set as

the test input grid of a task, and an agent edits this by selecting actions.

Depending on which operations an environment adopts, the state of the environ-

ment can be different. For instance, if an environment includes Copy operation, the

environment should include additional variables of the copied part: clip. Hence in

O2ARCEnv, more variables are included in the state, to support Copy and object-oriented

operations such as Move. These object-oriented actions from the O2ARC interface are

supplemented with selected, object, object pos and background. Descriptions of

these variables are depicted in 3.1. While the agent performs object-oriented opera-

– 8 –

tions in a row, object and background works as two layers; object is overlayed on

the background at object pos. For the detailed mechanism described in next section.

3.4 Two-Layer Mechanism for Object-Oriented Actions

The actions implemented in ARCLE, such as Move, Rotate, Flip, are object-

oriented actions that act on the pixels selected by the agent, i.e., the objects. Sim-

plifying the implementation of these actions to merely move the selected pixels could

lead to issues as illustrated in Figure 3.4.

Figure 3.4: The edge case with consecutive Move actions without two-layer mechanism.

Figure 3.4 demonstrates the issue with a simplistic implementation of the Move

action, depicted through the process of an agent performing two Move actions. In the

first Move action, the gray pixels (object) included in the selection move upwards,

overlapping with the yellow pixels directly above the object, and the pixels vacated

by the object’s movement are filled with the background color, black. When the gray

object is moved back down in the second Move action, the pixels previously painted

with the background color during the first move overlap with the object, and similarly,

the vacated pixels are filled with the background color, black. As a result, the yellow

pixels that overlapped with the object during the first Move action are changed to the

background color, black. Thus, a simple implementation of object-oriented actions can

lead to the disappearance of pixels that overlap as the object moves.

To prevent information loss during the movement of objects, ARCLE’s object-

oriented actions are implemented using a two-layer mechanism. This approach is in-

spired by the way people typically lift and move objects, dividing the state space’s grid

into an object layer, which includes currently selected pixels, and a background layer,

which comprises the rest of the pixels. Actions are performed on the object layer,

– 9 –

which is then placed over the background layer to create the final grid. This two-layer

mechanism for object-oriented actions utilizes variables stored in the object states

dictionary within the state space, and the detailed operation process is as Figure 3.5.

Figure 3.5: The edge case with serial two-layer mechanism Move actions.

At the start of an object-oriented action, the active variable in the dictionary is

set to 1, and the pixels designated by the agent’s selection in the action space are

stored in object, while the rest are stored in background. The top-left coordinate

of the bounding box surrounding the object is saved in object pos. If the action

performed is not object-oriented, the active variable is set to 0, and the object is

reset. When active is 1, meaning an object-oriented action was performed previously,

and the agent performs another object-oriented action, only object, object pos, or

object dim change depending on the type of action, while background remains un-

changed. Upon completing an object-oriented action, background and object merge

using the information from object pos, and the result is stored in grid. For example,

in the two-layer mechanism, the Move action is implemented such that only the location

of the object changes, altering only the value of object pos during the action, while

the rest of the variables in the dictionary, like object or object dim, do not change.

3.5 Rewards

The built-in reward currently offered in ARCLE is the sparse reward. This reward

grants 1 when the agent performs the submit action and the state space’s grid exactly

matches the task’s answer grid, and 0 if even a single pixel differs. This sparse reward

approach can hinder the learning of an agent whose total reward sum remains 0 as

– 10 –

there is a unique answer per task. To counteract this, an auxiliary reward was designed

and utilized in the subsequent Section 4.1. This auxiliary reward adds a penalty term

based on the ratio of the number of incorrect pixels to the total pixels, guiding the

agent to learn in a direction that minimizes the number of pixels differing from the

correct grid. Identifying a reward setting superior to this auxiliary reward setup, i.e.,

one that can be universally applied across all ARC tasks aware environment’s action

space (e.g., object-oriented operations), requires further research.

3.6 Source Code and Sample Usage

Since the environments in ARCLE implemented based on Gymnasium [2] and are

fully written in Python3, users who have used Gymnasium or its predecessor, OpenAI

Gym [30], can use it with familiarity. ARCLE is released on GitHub1 under the terms

of the Apache-2.0 License, as well as uploaded to the PyPI (Python Package Index),

so the ARCLE can be easily installed by the pip command.2 Without modifying the

source code, one can still create custom ARCLE-based environments by subclassing

provided environments in ARCLE or wrapping with the wrapper classes. Please note

that ARCLE is currently being continuously updated, so users may need to check the

version. In this paper, our descriptions and experiments are based on version 0.2.5.

Using Gymnasium API, an ARCLE environment can be created. Listing 1 is the

most basic usage of the ARCLE environment loop. In the code, the O2ARCEnv is created

and its reset method is called to initialize the environment to the input grid state of a

random ARC task. If adaptation is True in the reset options, the environment samples

and initializes states and answers as a demonstration pair, otherwise, it initializes as

a test input pair. Next, within a loop, the sample function from the Gymnasium API

is executed to select a random action, and the step function applies this action to the

current state. Finally, if the state reaches the correct solution, the reset function is

executed again to start the loop over with a new ARC task.

An example of using a bounding box form for selection (in action space) instead

1https://github.com/ConfeitoHS/arcle
2$ pip install arcle==0.2.5

– 11 –

Listing 1: Basic Usage of an ARCLE en-
vironment (O2ARCEnv) with Gymnasium
API. Action is randomly sampled.

import arcle

import gymnasium as gym

env = gym.make('ARCLE/O2ARCEnv',

render_mode='ansi')↪→
obs, info = env.reset(options={'adaptation':

True})↪→

for _ in range(1000):

action = env.action_space.sample()

obs, reward, term, trunc, info =

env.step(action)↪→
if term or trunc:

obs, info = env.reset()

Listing 2: BBox wrapping of the environ-
ment. Action is randomly sampled once,
resulting in a 5-tuple. Continuing code
from Listing 1.

from arcle.wrappers import BBoxWrapper

env = BBoxWrapper(env)

obs, info = env.reset()

action = env.action_space.sample()

print(action) # 5-tuple: (y1, x1, y2, x2, op)

of a raw binary mask, is shown in Listing 2. The environment is wrapped using a

BBoxWrapper from ARCLE. As a result, the random action returned by the sample

function consists of a tuple of five numbers, the first four values representing the bound-

ing box of the selection and the last value specifies operation. While configuring

selection as a raw binary mask for a grid of size H ×W offers the advantage of al-

lowing free-form object configurations, it also poses the problem of having a very large

action space of O(2HW). On the other hand, configuring selection as a bounding box

simplifies it to four integers, reducing the action space to O(H2W 2), but it limits the

shape of the object to a rectangle. This restriction is in place that necessitates the

selection of background pixels when dealing with non-rectangular objects. However,

ARCLE actions differentiate between zero-valued pixels, which are considered blank,

and non-zero pixels. This distinction ensures that when the object is isolated from

other pixels, there will be less overlap of irrelevant pixels by the background when

object-oriented actions are applied.

– 12 –

Chapter 4

ARCLE Benchmarks

This chapter explains the process through which an agent learns to solve synthetic

tasks using the ARCLE environment. To ultimately solve ARC, the agent must acquire

the ability to tackle unseen tasks through the learning process of tasks provided in

the training dataset. Approaches like meta-RL, generative models (e.g. GFlowNet),

and model-based RL algorithms (e.g. World Models) may be necessary to solve tasks

not observed during training. The initial results of learning an individual task are

described as a preliminary step. The PPO-based agent learns the input/output grid

pairs presented in one of the ARC tasks. If a method can be designed for the agent

to understand and learn from these tasks, it could be trained to solve unlearned tasks

using the approaches mentioned above with this agent.

4.1 Solving ARC with a Given Answer

While it is expected that ARCLE agents be better at imitating the cognitive pro-

cess of human problem-solving, training an RL agent for ARCLE itself additionally

becomes a difficult challenge due to its large discrete state-action space. This section

demonstrates the difficulty of obtaining highly performant agents within an ARCLE

environment even when the state-action spaces are simplified the answers are given

and ARCLE-specific auxiliary loss functions and network architectures to be pro-

posed can significantly improve agents’ performance. Specifically, these architectures

use operations of 0–9 only with rectangular-shaped selection only (in a bounding

box representation), and consequently, the sufficient information for decision making

(i.e., the state s) becomes (grid, grid dim, answer, answer dim) as assuming an-

swers to be given. We expect the methods introduced here to be used to help train

ARCLE agents for the original ARC, where the answers are not provided and state-

– 13 –

action spaces are more complex.

Proximal Policy Optimization (PPO) The well-known PPO algorithm [31] is

employed to train the agents to solve ARCLE with the answers given. Due to the

poor generalization ability [32] and learning instability of value-based RL algorithms,

recently, PPO has been widely adopted for tuning large neural models [33, 34]. It is

an on-policy policy-gradient algorithm that aims to perform a gradient update within

the trust region. Trajectories of the environment is collected and a data set D =

{(si, ai, Ri)}i is constructed consisting of the state, the action, and the returns (the

sum of the discounted rewards starting from the state). Then, the policy is updated

according to the following losses (L = LBaseline + LPPO) with samples from D:

LBaseline(ψ) = ED
[
(r − Vψ(s))2

]
LPPO(θ) = ED

[
min

(
πθ(a|s)
πold(a|s)

(r − sg[Vψ(s)]) , clip

(
πθ(a|s)
πold(a|s)

, 1 − ϵ, 1 + ϵ

)
(R− sg[Vψ(s)])

)]
,

where Vψ is a value function that works as a baseline that reduces the gradient variance,

πold is a policy used to gather the trajectories, and sg[·] is a stop-gradient operator.

r ∈ [−1, 0] is a reward from a dense reward function that penalizes the agent by the

ratio of incorrect pixels of the next state.

State encoder A shared state encoder for the policy πθ is used, and the baseline

Vψ based on a Transformer encoder architecture [35]. Each pixel of grid and answer

is encoded as a token by taking a summation over corresponding position, color, and

token type embeddings, where token type embedding informs whether it belongs to

grid or answer. Depending on grid dim and answer dim, the tokens with an inactive

pixel are masked so that it is not attended by other tokens. Each function gets its

own special token(s) and feed-forward network to pass the extracted state feature from

its token. The baseline Vψ use a single special token for its scalar output whereas the

policy πθ uses two or more tokens for representing both operation and selection,

which will be detailed in Section 4.1.2.

– 14 –

0 2 4 6
Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e
0 2 4 6

Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Random initial grids and answers Initial grids and answers from ARC problems

L L + Lrt 1 L + Lrt 1 + Lrt L + Lrt 1 + Lrt + Lst + 1

Figure 4.1: Performance of agents when various auxiliary losses are additionally used
are shown. The experiment is repeated four times, and the shaded regions denote 95%
confidence intervals.

In the following experiments, tasks with grid dim and answer dim less than 5×5 are

only used due to the computational demand of the current state encoder architecture.

However, it can be alleviated by using more scalable architecture, e.g., a patch as a

token instead of a pixel as a token [36]. Using two different settings, (1) a random

setting where the randomly generated 5 × 5 initial grid and goal are used, and (2)

an ARC setting where we used initial grids and goals that are equal or smaller than

5 × 5 from ARC tasks, are experimented. In the random setting, a policy needs to

act precisely due to the vast number of different goals, whereas, in the ARC setting, a

policy needs to adapt to various grid sizes.

4.1.1 Learning better representation through auxiliary loss functions

Using an auxiliary loss function to predict important information has been a widely

used approach for better generalizable representation and faster training [37, 38]. We

experimented three different auxiliary losses, (1) Lrt−1 predicting the previous reward

rt−1 from the current state st, (2) Lrt predicting the current reward rt from the current

state-action (st, at), and (3) Lst+1 predicting the next state st+1 from the current state-

action (st, at). All three functions are deterministic, and they are highly informative as

they are correlated to either the value function or the action-value function. For policy

architecture, the color-equivariant policy architecture is used which will be detailed in

Section 4.1.2.

– 15 –

0 2 4 6
Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e
0 2 4 6

Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Random initial grids and answers Initial grids and answers from ARC problems

Non-sequential Policy Sequential Policy Color Equivariant Policy

Figure 4.2: Performance of agents when equipped with different policy architectures.
The experiment is repeated 4 times, and the shaded regions denote 95% confidence
intervals.

While the first auxiliary loss Lrt−1 can be easily adopted by additionally training

a feed-forward network on top of the extracted state feature from the special token of

Vψ, the other two auxiliary losses require the state-action feature that is not utilized

in conventional PPO. The state-action feature are computed by performing a forward

propagation again with additional action embedding tokens after sampling an action

from a policy. The prediction for the loss Lrt is done on top of the last action token

that embeds selection, and the prediction for the loss Lst+1 is done on top of tokens

that represent each pixel of grid.

The results are reported in Figure 4.1. Note that the vanilla PPO agent was not

able to learn anything in the random setting despite the vastly simplified state-action

space, demonstrating the difficulty of training an agent for ARCLE. While all of the

experimented auxiliary losses improve the learning of the agent, it can be seen that

adopting auxiliary features and adopting state-action feature-based auxiliary features

make a significant difference in performance. Only with all three of these auxiliary

losses, it was possible to get three agents out of four that achieved a success rate larger

than 95% in the random setting. On the other hand, in the ARC setting, auxiliary

losses were able to help, but their effect was relatively less dramatic.

– 16 –

4.1.2 Non-factorizable policy architecture

It can be observed that the two main components of the action space of ARCLE,

operation and selection, are intertwined with each other and cannot be separately

decided. For example, the optimal selection for coloring a pixel, or rotating an object

will be completely different. This observation shows that the considerate choice of policy

architecture is necessary, as conventional factorized policy assuming (operation ⊥⊥

selection) | s will have limited expressivity in representing such complex multimodal

distributions. For all experiments in this section, all three auxiliary losses introduced

in Section 4.1.1 are used.

To demonstrate the expressivity of different policy architectures, experiments on the

following three architecture types: (1) Non-sequential policy assumes (operation ⊥

⊥ selection) | s, are conducted. This policy is implemented by using two special to-

kens for operation and selection with two feed-forward networks on top of extracted

features from those tokens. (2) Sequential policy does not assume conditional in-

dependence, by making the decision of selection dependent on sampled operation,

similar to the RNN policy of [39]. This policy requires two forward passes to sample

an action, one for sampling operation from its special token and one for sampling

selection from the token embedding the sampled operation, and therefore it is more

computationally demanding.

On the other hand, experiments on (3) Color-equivariant policy that takes

advantage of the ARCLE task that the same permutation of colors applied to the task

and the policy coloring actions results in the equivalent task, i.e., the color equivariance,

are conducted. Color equivariance of the policy can be achieved by using several special

tokens for policy equal to the number of operation to represent them, and by setting

a special token of color-related operation as a function of color embedding used to

represent grid. Then two different feed-forward networks are placed on top of extracted

features of these operation tokens. One gives scalar output per token to be used

as logits for deciding the operation. The other one is used to get the operation-

specific selection on top of the sampled operation token. This policy only requires

– 17 –

0 2 4 6 8
Policy Updates ×105

40

35

30

25

20

15

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6 8
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Non-sequential Policy Sequential Policy Color Equivariant Policy

Figure 4.3: Performance of agents on continual RL task when equipped with different
policy architectures. The experiment is repeated 4 times, and the shaded regions denote
95% confidence intervals.

one forward pass with a few additional operation tokens, and it is computationally

efficient compared to the sequential policy.

Figure 4.2 summarizes the result. Overall, it can be observed that sequential policy

and color equivariant policy outperform non-sequential policy, showing that conditional

dependence is crucial for learning in ARCLE. Sequential policy shows more stable

and faster learning compared to color equivariant policy in terms of policy updates.

However, considering that sequential policy takes approximately 1.5x training time and

2x inference time, there is a clear trade-off and one can choose from two depending on

the situation.

4.1.3 ARCLE as a Continual RL Environment

To address the inherent challenges of the ARCLE environment, it may be neces-

sary to provide an agent with a curriculum. In such scenarios, an agent capable of

continuously learning from a changing set of tasks would be beneficial. Experiments

are conducted in a continual RL setting to demonstrate the robust learning capabilities

of the proposed policy architectures in response to task changes. In this experiment,

the initial grids and answers were randomly generated as before, but the number of

colors used increased periodically—specifically, across five learning phases with 2, 4, 6,

8, and 10 colors respectively.

As depicted in Figure 4.3, all agents experienced a significant drop in performance

whenever the number of colors increased. Similar to what is observed in Figure 4.2, the

– 18 –

non-sequential policy cannot express the complicated dependencies between operation

and selection, and is outperformed by the other two policy architectures. However,

within the context of the continual RL experiment, the sequential policy was not able

to adapt to the new sets of tasks and recorded a 0% success rate after the second change

in the environment. Conversely, the color equivariant policy demonstrated the ability

to continuously improve its success rate, illustrating its rapid adaptability, which stems

from its architectural design.

4.2 Research Directions

Based on Section 4.1, where we demonstrated the development and initial success

of a PPO-based agent within ARCLE, this section aims to show future RL research

in addressing the challenges. Inspired by François Chollet [1], we posit that an effec-

tive ARC solver must possess advanced abstraction and reasoning abilities. Thus, we

propose several research directions using ARCLE (e.g. MAML, GFlowNet, and World

Model).

4.2.1 Meta-RL for Enhanced Reasoning Skills

ARC is a multi-task few-shot learning problem: the whole dataset consists of mul-

tiple tasks, and each task has few demonstration pairs (supporting set) to infer the

output of a test input (query set). ARCLE is in the identical problem but in the RL

setting. To manage this, multi-task RL [40] or meta-RL [41] algorithms that foster

an agent to experience over a task distribution could be applied. We have focused on

developing ideas with meta-RL rather than multi-task RL as it gives a richer optimiza-

tion. In this setting, the meta-training set and the meta-testing set are the training

and evaluation sets given in the ARC dataset.

Meta-RL algorithms on ARCLE should be capable of outputting an RL algorithm

that rapidly reasons and produces a policy for each ARC task, without exhaustive

searching over actions. The policy is trained to generate valid trajectories from the

input to the output grids simultaneously on multiple demonstration pairs in an ARC

– 19 –

task. Then the policy is applied to the test input grid to generate output.

Therefore, Meta-RL endows agents with essential reasoning skills for ARC’s diverse

tasks, enabling them to quickly adapt to new tasks by autonomously developing learn-

ing strategies. Integrating Meta-RL with ARCLE opens new pathways for researchers

to devise techniques that allow AI to effectively generalize learning across various tasks,

thus embodying the ‘learning to learn’ principle.

4.2.2 Generative Models as Surrogates for Reasoning

Generative models, particularly GFlowNet [42], offer a novel approach to tackling

the reasoning challenges presented by ARC. While an agent is equally given a set

of grid operations on the ARCLE, many possible trajectories can lead to a correct

answer for an ARC task. Moreover, among demonstration pairs in an ARC task, the

detailed trajectories for each pair are varied, as each pair has its own input grid.

GFlowNet establishes its policy as a generative model that enables the sampling of

actions from it, and the probability of sampling is proportional to the reward-driven

objective. Therefore, GFlowNet benefits from not only learning a posterior distribution

to include high-reward modes but also from searching multiple modes of a solution

space by leveraging probabilistic reasoning to generate diverse possible solutions, in

the form of a directed acyclic graph (DAG). This supports a GFlowNet policy to solve

the demonstration pairs in one ARC task, although its input grids are different from

(but possess the same rule) one another. Moreover, its ability to identify multiple viable

solutions for individual ARC tasks underscores its utility for data augmentation with

correct solutions, further enhancing its value as a research tool in this domain.

4.2.3 Model-Based RL for Abstraction Skills

Encoding the demonstration pairs based on the core knowledge is a crucial point in

establishing a plan to solve an ARC task. Model-based RL, particularly World Models

might be a solution to support abstraction in tackling the ARC pairs. Among the ARC

tasks, there are dissimilar common rules over all pairs in a task, although, there are

– 20 –

a few categories of core knowledge that a common rule in each task be derived from.

Objectness, goal-directness, arithmetic, geometric, and topology are part of them [1],

and these can be infused in ARCLE’s actions, like Move and Rotate operations. Since

World Models internalize the environment transitions caused by ARCLE’s actions to

learn an agent on its simulation, it would learn a joint representation of ARCLE’s

grid pair and actions (containing core knowledge). It encourages a controller in World

Model agent to utilize flexible neural representation, rather than hard-coded operations

in ARCLE to simulate. In short, World Models would provide neural abstraction skills

of the pairs and operations in ARCLE, which supports a controller to search a rule

efficiently on the flexible representation.

Hence, developing agents that can construct and utilize these models is a step

towards equipping them with the necessary abstraction skills for handling both trained

and untrained tasks.

4.2.4 Further Research Questions

Several research questions would advance while tackling ARC with ARCLE. First,

the ARC task does not possess an explicit task distribution since individual ARC tasks

include a unique rule and the current ARC dataset has only a finite 800 training and

evaluation tasks. Categorizing ARC tasks correspondingly to the core knowledge [18]

and parameterizing tasks in each category similarly to XLand [43] would be a worth-

while topic that reinforces meta-RL and multi-task learning more promising methods

to solve ARC with broader tasks.

Next, ARCLE’s action space consists of two sub-action spaces: an integer operation

and a discrete binary mask selection. Handling with selection might entail an ex-

ponential size of search space: in particular, the size of DAG with the GFlowNet ap-

proaches grows enormously to degrade the efficiency of figuring out the correct output

grid. One probable setting is that utilizing a sequential policy in 4.1.2, maintaining two

networks that produce operation and selection hierarchically. Then this GFlowNet

may maintain a DAG of sampling operation only by considering ARCLE as a proba-

– 21 –

bilistic environment. However, the validity of this method is indeterministic.

Lastly, one might doubt the necessity of World Models in solving ARC to provide

richer abstraction. The reason would be that training agents directly in the environment

is more straightforward since the environment’s dynamics are deterministic, rather than

learning the World Models. Nevertheless, in ARC and ARCLE, there is a significant

amount of auxiliary information to abstract more than a transition of observation:

object information and their topology, symmetry, and so forth. Previous studies have

shown that it can capture information such as a hidden gravity parameter in an en-

vironment [44], and it is expected that additional useful information for ARC can be

extracted as well. One open question brought here is what information a World Model

can extract for ARC. In particular, whether it can disentangle and extract informa-

tion common to every ARC task (e.g., state transition) and task-specific priors (e.g.,

objectness) in an interpretable form is a research question for the future.

– 22 –

Chapter 5

Conclusion

This thesis introduced ARCLE, an RL environment designed for the ARC benchmark,

using the Gymnasium library for direct engagement with ARC’s challenges. Our de-

velopment and application of a PPO-based agent, enhanced with auxiliary losses and

non-factorizable policies, have demonstrated ARCLE’s possibility of learning and per-

formance improvements in addressing ARC tasks. In detail, auxiliary losses improved

learning outcomes, especially evident in random settings where the comprehensive ap-

plication of all proposed strategies yielded the best performance. The success rate in

these settings, and the superior outcomes from applying sequential and color-equivalent

policies, underline the importance of strategic operation and selection processes.

These experimental results show advanced RL methodologies—such as meta-RL,

generative models, and model-based RL—to further enhance AI’s reasoning and ab-

straction abilities. Specifically, meta-RL offers the potential to refine AI’s reasoning

skills by enabling adaptive learning strategies across varied tasks, suggesting a path

toward more generalized intelligence. Generative models, by simulating complex reason-

ing processes, could serve as links between data and sophisticated decision-making in

ARC. Model-based RL model could strengthen AI’s ability to distill and apply abstract

concepts from complex inputs. Thus, further research using ARCLE could elevate AI’s

learning strategies and expand the boundaries of its current capabilities. We invite the

RL community to engage with ARCLE not just to solve ARC but to contribute to the

broader endeavor of advancing AI research. Through such collaborative efforts, we can

unlock new horizons in AI’s ability to learn, reason, and abstract, marking significant

progress in the field.

– 23 –

References

1. F. Chollet, “On the Measure of Intelligence,” arXiv:1911.01547, 2019.

2. M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu,

M. Goulão, A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré,

S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. Younis, “Gymnasium,” 2023.

3. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,”

arXiv:1312.5602, 2013.

4. J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon, and

M. Humenberger, “R2D2: Repeatable and Reliable Detector and Descriptor,”

arXiv:1906.06195, 2019.

5. J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,

A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., “Mastering Atari, Go,

Chess and Shogi by Planning with a Learned Model,” Nature, 2020.

6. A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, and

C. Blundell, “Agent57: Outperforming the Atari Human Benchmark,” in ICML,

2020.

7. Y. Qi, K. Zhang, A. Sain, and Y.-Z. Song, “PQA: Perceptual Question Answering,”

in CVPR, 2021.

– 24 –

8. S. Kim, P. Phunyaphibarn, D. Ahn, and S. Kim, “Playgrounds for Abstraction

and Reasoning,” in NeurIPS Workshop on Neuro Causal and Symbolic AI, 2022.

9. Y. Xu, E. B. Khalil, and S. Sanner, “Graphs, Constraints, and Search for the

Abstraction and Reasoning Corpus,” in AAAI, 2023.

10. A. Banburski, A. Gandhi, S. Alford, S. Dandekar, S. Chin, and T. Poggio, “Dream-

ing with ARC,” in NeurIPS Workshop on Learning Meets Combinatorial Algo-

rithms, 2020.

11. S. Acquaviva, Y. Pu, M. Kryven, T. Sechopoulos, C. Wong, G. Ecanow, M. Nye,

M. Tessler, and J. B. Tenenbaum, “Communicating Natural Programs to Humans

and Machines,” in NeurIPS, 2022.

12. R. Assouel, P. Rodriguez, P. Taslakian, D. Vazquez, and Y. Bengio, “Object-

Centric Compositional Imagination for Visual Abstract Reasoning,” in ICLR

Workshop on the Elements of Reasoning: Objects, Structure, and Causality, 2022.

13. S. Alford, A. Gandhi, A. Rangamani, A. Banburski, T. Wang, S. Dandekar,

J. Chin, T. Poggio, and P. Chin, “Neural-Guided, Bidirectional Program Search

for Abstraction and Reasoning,” in COMPLEX NETWORKS, 2021.

14. J. Witt, S. Rasing, S. Dumančić, T. Guns, and C.-C. Carbon, “A Divide-Align-

Conquer Strategy for Program Synthesis,” arXiv:2301.03094, 2023.

15. J. Ainooson, D. Sanyal, J. P. Michelson, Y. Yang, and M. Kunda, “A

– 25 –

Neurodiversity-Inspired Solver for the Abstraction & Reasoning Corpus (ARC)

Using Visual Imagery and Program Synthesis,” arXiv:2302.09425, 2023.

16. G. Camposampiero, L. Houmard, B. Estermann, J. Mathys, and R. Wattenhofer,

“Abstract Visual Reasoning Enabled by Language,” in CVPR, 2023.

17. Y. Xu, W. Li, P. Vaezipoor, S. Sanner, and E. B. Khalil, “LLMs and the Abstrac-

tion and Reasoning Corpus: Successes, Failures, and the Importance of Object-

Based Representations,” Transactions on Machine Learning Research, 2024.

18. A. Moskvichev, V. V. Odouard, and M. Mitchell, “The ConceptARC Benchmark:

Evaluating Understanding and Generalization in the ARC Domain,” Transactions

on Machine Learning Research, 2023.

19. M. Mitchell, A. B. Palmarini, and A. Moskvichev, “Comparing Humans, GPT-4,

and GPT-4V On Abstraction and Reasoning Tasks,” in AAAI Workshop on Are

Large Language Models Simply Causal Parrots?, 2024.

20. S. Lee, W. Sim, D. Shin, S. Hwang, W. Seo, J. Park, S. Lee, S. Kim, and S. Kim,

“Reasoning Abilities of Large Language Models: In-Depth Analysis on the Ab-

straction and Reasoning Corpus,” arXiv:2403.11793, 2024.

21. N. Butt, B. Manczak, A. Wiggers, C. Rainone, D. Zhang, M. Defferrard, and

T. Cohen, “CodeIt: Self-Improving Language Models with Prioritized Hindsight

Replay,” arXiv:2402.04858, 2024.

22. J. Park, J. Im, S. Hwang, M. Lim, S. Ualibekova, S. Kim, and S. Kim, “Unrav-

– 26 –

eling the ARC Puzzle: Mimicking Human Solutions with Object-Centric Decision

Transformer,” in ICML Workshop on Interactive Learning with Implicit Human

Feedback, 2023.

23. O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,

A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., “Starcraft II: A

New Challenge for Reinforcement Learning,” arXiv:1708.04782, 2017.

24. C. Kauten, “An OpenAI Gym Environment for Super Mario Bros,” 2018.

25. H. Küttler, N. Nardelli, A. Miller, R. Raileanu, M. Selvatici, E. Grefenstette, and

T. Rocktäschel, “The Nethack Learning Environment,” in NeurIPS, 2020.

26. T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-

World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement

Learning,” in CoRL, 2020.

27. S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “RLBench: The Robot Learning

Benchmark & Learning Environment,” IEEE Robotics and Automation Letters,

2020.

28. O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A Benchmark

for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation

Tasks,” IEEE Robotics and Automation Letters, 2022.

29. F. Chollet, “ARC Testing Interface,” 2019.

– 27 –

30. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “OpenAI Gym,” arXiv:1606.01540, 2016.

31. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy

Optimization algorithms,” arXiv:1707.06347, 2017.

32. A. Kumar, R. Agarwal, T. Ma, A. Courville, G. Tucker, and S. Levine, “DR3:

Value-Based Deep Reinforcement Learning Requires Explicit Regularization,” in

ICLR, 2021.

33. N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford,

D. Amodei, and P. F. Christiano, “Learning to summarize with human feedback,”

in NeurIPS, 2020.

34. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, et al., “Training Language Models to Follow In-

structions with Human Feedback,” in NeurIPS, 2022.

35. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is All You Need,” in NeurIPS, 2017.

36. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An Image is Worth 16×16

Words: Transformers for Image Recognition at Scale,” in ICLR, 2021.

37. M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

– 28 –

K. Kavukcuoglu, “Reinforcement Learning with Unsupervised Auxiliary Tasks,”

in ICLR, 2016.

38. G. Lample and D. S. Chaplot, “Playing FPS Games with Deep Reinforcement

Learning,” in AAAI, 2017.

39. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,

D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster Level in

StarCraft II using Multi-Agent Reinforcement Learning,” Nature, 2019.

40. A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-Task Reinforcement Learning:

A Hierarchical Bayesian Approach,” in ICML, 2007.

41. C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast Adap-

tation of Deep Networks,” in ICML, 2017.

42. Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio, “GFlowNet

Foundations,” arXiv:2111.09266, 2023.

43. J. Bauer, K. Baumli, F. Behbahani, A. Bhoopchand, N. Bradley-Schmieg,

M. Chang, N. Clay, A. Collister, V. Dasagi, L. Gonzalez, et al., “Human-Timescale

Adaptation in an Open-Ended Task Space,” in ICML, 2023.

44. C. Reale and R. Russell, “Learning and Understanding a Disentangled

Feature Representation for Hidden Parameters in Reinforcement Learning,”

arXiv.2211.16315, 2022.

– 29 –

45. S. Shim, D. Ko, H. Lee, S. Lee, D. Song, S. Hwang, S. Kim, and S. Kim, “O2ARC

3.0: A Platform for Solving and Creating ARC Tasks,” in IJCAI Demo, 2024.

– 30 –

Appendix A

Object-Oriented ARC (O2ARC) Web Inter-

face

Object-Oriented ARC (O2ARC) is a web interface that allows humans to directly

solve ARC tasks and collect the process of solving them [8, 45]1, an improvement upon

the initial testing web interface developed by François Chollet [29]. Initially, Chollet’s

testing web interface featured only a basic version involving coloring. However, the

version of O2ARC has progressively improved to include object-oriented actions such

as movement, rotation, and mirroring. Since actions represent the most intuitive low-

level actions conceivable by humans, the sequence of actions (traces) could be used

as a dataset reflecting human cognitive processes. The most recent version of O2ARC

allows for the collection of traces solved by humans and also includes the ability to

create tasks directly, thus evolving into a tool that can aid in the development of

general artificial intelligence capable of mimicking human cognitive processes using

ARC. The dataset collecting human traces is valuable in the research and development

of artificial intelligence capable of human-like thinking.

Previous research has been conducted on whether learning from human traces can

solve tasks [22]. This research demonstrated that with a sufficient number of traces

solved by humans, it becomes feasible to solve ARC tasks by reflecting human solutions,

thereby showcasing the potential of offline reinforcement learning. In line with this,

ARCLE has been developed by integrating the actions of O2ARC to investigate whether

an agent can address ARC tasks like human thinking. While O2ARC has one of its

strengths in collecting human traces, ARCLE has the advantage of being able to train

agents using the actions same as O2ARC. Therefore, ARCLE can be seen as having

1https://o2arc.com

– 31 –

transformed O2ARC into a reinforcement learning environment for solving ARC tasks

by agents.

Figure A.1 presents the interface for solving ARC tasks in O2ARC. As depicted,

The left side part “See the original pairs” displays demo pairs corresponding to the

task, while the center provides the test input grid for the task. Users infer common

rules from these examples to guess the appropriate answer for the given input. The

right side features a grid space labeled “What should be the result” where users input

their answers. Additionally, a palette on the far right offers a selection of 10 colors

for ARC. Users can use O2ARC’s functionalities to color pixels, select objects, and

perform actions such as rotation or copying and pasting. If necessary, they can input

integer numbers into width and height cells to resize and submit the correct answer.

Figure A.1: O2ARC Solve page. The left side shows demo input and output grid pairs,
the center demonstrates the test input grid, and the right side consists of the result
grid and available actions.

– 32 –

Appendix B

Abbreviations

AI Artificial Intelligence

AGI Artificial General Intelligence

RL Reinforcement Learning

PPO Proximal Policy Optimization

ARC Abstraction and Reasoning Corpus

ARCLE ARC Learning Environment

MAML Model-Agnostic Meta-Learning

O2ARC Object-Oriented ARC (Web Interface)

DAG Directed Acyclic Graph

– 33 –

Acknowledgements

꾸준히 저를 무조건적으로 지지해주시고, 조언해주신 부모님, 할머님께 매우 감사합니

다. 학부 재학기간 4년간 저를 응원해주고 격려해주고 지지해준 동아리 선배와 친구

모두에게 감사합니다. 좋아하는 것에 대해 같이 이야기하고, 해커톤도 같이 출전하는

등 다양한 추억을 쌓을 수 있었습니다. 데이터사이언스연구실에서 연구와 개발, 랩 이벤

트를 열면서 많은 지원해주신 김선동 교수님과 같이 연구했던 연구실 동료들 모두에게

감사드립니다. 다루기 어려운 문제를 해결하고자 할 때의 어려움과 접근 방법, 새로운

아이디어가 나오는 과정, 논문 쓰는 방법, 영어 발표하는 방법 뿐만 아니라 교내외에의

있는 다양한 기회를 소개해주시고 연결해주셔서 감사합니다.

– 34 –

