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Abstract

This study is grounded in prior work on program induction
framework with a structured latent program space, called Pro-
gram Lattice Auto Encoder(PLAE). It preserves composi-
tional structure by training an encoder where programs and
their compositions correspond to integer linear combinations
of program bases, forming a discrete program lattice that
captures the geometric structure of compositional reasoning.
Based on it, this paper proposes a novel extension of the
PLAE aimed at improving generalization and efficiency by
choosing a cylindrical lattice latent space instead of plane,
which can represent invariant programs. The core hypothesis
is that only isometric transformations conserve compositional
properties of lattice structure and therefore developable sur-
faces such as a cylinder or cone are permissible as embed-
ding space. Moreover, through demonstrating a contradiction
of lattice on conical manifolds, it conclude that only cylinder
is a possible embedding manifold for lattice structure.

Introduction&Background
A central goal of Artificial General Intelligence (AGI) is to
develop models that exhibit human-like reasoning and gen-
eralization. The Abstraction and Reasoning Corpus(ARC)
(Chollet 2019) is a crucial testbed for this goal, challenging
models to infer and apply abstract rules from a few exam-
ples rather than relying on memorization. Neuro-symbolic
methods, which blend neural and symbolic reasoning, have
emerged as a leading strategy for solving ARC such as
DreamCoder(Ellis et al. 2020). This hybrid approach is mo-
tivated by the distinct weaknesses of its alternatives: purely
symbolic systems often struggle with the combinatorial ex-
plosion of their search space, while purely neural methods
fail to generalize to novel, out-of-distribution tasks.

Recent work has sought to bridge the gap between purely
symbolic and neural methods. A notable example is the La-
tent Program Network (LPN)(Macfarlane and Bonnet 2025),
which learns a distribution over programs in a continuous
latent space, enabling efficient gradient-based search at test
time. LPN’s key innovation is the fusion of neural network
scalability with the structured reasoning of symbolic AI. The
model generalizes not by simple stochastic sampling but by
actively searching for the latent program that best explains
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a new task. However, LPN has several key limitations that
motivate our work. Its primary drawback is a lack of inter-
pretability as it operates on implicit, continuous represen-
tations rather than explicit, human-readable programs. Fur-
thermore, its search process is not a true program synthe-
sis; instead, it samples from a program distribution, and a
decoder executes the program in a single step. This single-
step execution limits the model’s ability to perform multi-
step compositional reasoning and overloads the decoder,
which must be trained to handle programs of vastly different
complexities. This contributes to poor skill-acquisition effi-
ciency, which requires extensive training in large externally
generated datasets.

Prior Work by Applicant In contrast, our ongoing work
on the Program Lattice Auto Encoder (PLAE)(Park et al.
2025) embeds observations, such as input-output pairs, as
vectors within a structured latent space, called a program lat-
tice. Within this lattice, foundational programs act as basis
vectors, allowing any composed program on a lattice point
to be expressed as a linear combination of these bases. This
reframes program induction into a three-step geometric pro-
cess: 1) inferring the vector in the lattice space that cor-
responds to the task data, 2) identifying the closest lattice
point to that vector, and 3) decomposing the resulting lattice
point vector using the program bases. This framework en-
hances both interpretability and computational efficiency by
capturing the geometric nature of compositional reasoning
in a discrete space. However, the current PLAE model has
a key limitation: its reliance on a fixed, pre-defined lattice
structure makes it suboptimal for certain problem domains.
Specifically, standard vector addition cannot model invariant
operations—actions that should return to their starting point
after a set number of applications, like a full rotation. This
“invariant problem” forces the model to generate longer pro-
gram sequences, leading to computational inefficiency.

Research Focus To overcome these key limitations of
PLAE, this research statement focus on finding alternative
manifolds of flat lattice embedding space to represent in-
variant operations while preserving lattice compositional-
ity. Consequently, cylindrical embedding space was selected
among iso-metric transformed manifolds by excluding man-
ifold which cannot represent invariant program.



Figure 1: Program Induction process of Program Lattice Auto Encoder(above) and extended approach(blow): An encoder
embeds input and output pair as vector on lattice and find closest lattice point. Finally vector was decomposed with bases
corresponding to primitive programs.

Approach
To address the limitations of fixed flat lattices in modeling
invariant operations, we propose mapping the latent program
space onto a cylindrical manifold. Unlike a standard Eu-
clidean plane where vector addition is unbounded, a cylin-
drical embedding introduces a periodic boundary condition
along one dimension. This topological feature allows the
model to naturally represent invariant operations—such as a
360◦ rotation—as closed loops that return to the initial state,
rather than as infinite displacements in a flat space.

Geometric Justification and Definition The choice of the
cylinder is not arbitrary but dictated by the geometric re-
quirements of the program lattice. To preserve the compo-
sitionality of the lattice (where programs are linear combi-
nations of basis vectors), the embedding manifold must be
isometric to the flat Euclidean plane. This restricts our can-
didate spaces to developable surfaces—surfaces with zero
Gaussian curvature—such as cylinders and cones. As illus-
trated in Figure 1 (bottom), the cylindrical manifold allows
us to wrap the axis corresponding to the invariant operation.
On this manifold, a sequence of programs that should result
in an identity operation (e.g., four 90◦ rotations) forms a tra-
jectory that encircles the cylinder and connects back to the
starting lattice point. This resolves the “invariant problem”
by matching the geometric path with the logical outcome,
thereby preventing the generation of unnecessarily long pro-
gram sequences.

Uniqueness of the Cylinder While other developable sur-
faces such as cones also preserve local isometry, they fail to
support the global structure required for lattice embedding.
On a conical manifold, straight lines from a flat plane map
to spirals rather than closed loops due to the singularity at
the apex. Consequently, a lattice structure cannot maintain
its regular periodicity on a cone without distortion. There-
fore, the cylinder is the unique manifold that simultaneously
satisfies two critical conditions: 1) it preserves the metric

tensor of the flat lattice (isometry), ensuring vector addition
remains valid, and 2) it possesses the correct topology to
map linear invariant sequences to closed loops.

Experimental Plan and Expected Findings
The proposed approach will be evaluated through a series of
tests on both a controlled synthetic environment(such as Ru-
bik’s cube) and ARC datasets. The goal is to demonstrate
that the cylindrical-based latent space improves computa-
tional efficiency by comparing the sample efficiency against
other compositional reasoning models including PLAE.

If the cylindrical manifold demonstrates superior perfor-
mance to a flat lattice as an embedding space, this would
serve as strong evidence that a cylindrical geometry is a
more suitable choice for abstracting data containing invari-
ant operations. Furthermore, a significant performance gap
would show that applying invariant operations play a cru-
cial role in a model’s overall efficiency. Beyond this, if the
model can learn and successfully identify an appropriate ra-
dius for the cylinder when it is set as a trainable parame-
ter, it would demonstrate the feasibility of a framework in
which the model autonomously configures its embedding
space based on the specific properties of the data.

Conclusion
This paper validates which embedding space is appropriate
for representing invariant program on lattice, from the per-
spective of isometric transformation and geometrical struc-
ture of lattice. In conclusion, only the cylinder can satisfy the
compositional relation of the lattice points without destroy-
ing the structural characteristics of the plane lattice. Further-
more, setting the radius of cylinder as trainable parameters
provides an excellent starting point for a model that refines
its latent space based on the dataset which connects to meta-
learning and geometric deep learning on future research.
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