
The Othello AI Arena: Evaluating Intelligent Systems
Through Limited-Time Adaptation to Unseen Boards

Sundong Kim
Gwangju Institute of Science and Technology

sundong@gist.ac.kr

Abstract

The ability to rapidly adapt to novel and unforeseen environmental changes is a
cornerstone of artificial general intelligence (AGI), yet it remains a critical blind
spot in most existing AI benchmarks. Traditional evaluation largely focuses on
optimizing performance within fixed environments, failing to assess systems’ flexi-
bility and generalization capabilities when faced with even subtle rule or structural
modifications. Addressing this gap, I introduce the Othello AI Arena, a novel
benchmark framework designed to evaluate intelligent systems based on their
capacity for limited-time adaptation to unseen environments. Our platform poses
a meta-learning challenge: participants must develop systems that can analyze
the specific configuration and rules of a novel Othello board within a strict time
limit (≈ 60 seconds) and generate a tailored, high-performing strategy for that
unique environment. With this, evaluation of the meta-level intelligence (which
performs the analysis and strategy generation) can be separated from the task-
level strategy performance of the generated strategy. The Arena features a diverse
set of game stages, including public stages for development and private stages
with structural and rule variations (such as altered board sizes, blocked cells, non-
standard capture mechanics, and modified turn dynamics) designed to test genuine
adaptive and generalization capabilities. Implemented as an accessible web-based
platform, the Arena provides real-time visualization, automated evaluation using
multi-dimensional metrics (including adaptation speed and efficiency), and com-
prehensive logging for post-hoc analysis. Initial observations from pilot tests and
preliminary student engagements highlight fascinating patterns in adaptation ap-
proaches, ranging from rapid parameter tuning to rudimentary environmental model
learning through simulation. The Othello AI Arena offers a unique educational tool
and a valuable research benchmark for fostering and evaluating the crucial skill of
rapid, intelligent adaptation in AI systems.

Contents
1 Introduction 2

2 The Othello AI Arena Framework 3
2.1 System Architecture . 4

2.2 Challenge Design . 4

2.3 API and Environment Interaction . 5

3 Meta-Learning Formulation and Adaptation Mechanisms 5
3.1 Adaptation Strategies under Time Constraints . 6

3.2 Connection to General Intelligence . 7

4 Evaluation Methodology and Dataset Potential 7

1

4.1 Evaluation Metrics . 7

4.2 Tournament Setup . 8

4.3 Dataset Structure and Potential . 9

5 Benchmark Insights from Preliminary Experiments 9
5.1 Illustrative Tournament Results . 9

5.2 Preliminary Observations on Adaptation Patterns . 10

5.3 Potential for Analysis and Extension . 10

5.4 Conclusion . 10

A System Architecture 12

B Core Modules and Implementation Details 12
B.1 Game Core Engine . 12

B.2 Intelligent System Execution Environment . 14

B.3 Strategy Management . 14

B.4 Game Flow and UI Management . 15

B.5 Logging and Replay System . 15

B.6 Tournament System . 16

C Othello Arena API Reference 16
C.1 Example Intelligent System: Advanced Template . 17

D Board Variation Types 28
D.1 Structural Variations . 28

D.2 Rule Variations . 28

D.3 Initial State Variations . 29

E Time Management Strategies in Intelligent System Development 30
E.1 Leveraging Tdevelopment: The Extended Preparation Phase . 30

E.2 Optimizing Tanalysis: Rapid Environment Modeling . 30

E.3 Managing Tgame: Constrained Real-Time Execution . 31

F Game Logging and Data Format 31
F.1 Human-Readable Text Log . 31

F.2 Machine-Readable JSON Log . 33

G Human Adaptation to Novel Board Games: Observations 34
G.1 Adaptation in Othello Arena Stages . 34

G.2 Adaptation in YINSH Game . 35

1 Introduction

Current AI benchmarks predominantly focus on measuring peak performance in static environments.
While valuable, this approach overlooks the dynamic nature of real-world problems, where environ-
ments are constantly evolving, requiring intelligent agents to be robust and adaptable. Furthermore,
many benchmarks evaluate only the final output or performance, without explicitly assessing the
underlying process by which an intelligent system analyzes a new task and generates a suitable
strategy. This makes it difficult to understand and evaluate the meta-cognitive abilities, such as
efficient knowledge transfer, rapid model building, and strategic reasoning under uncertainty, that are
critical for true general intelligence.

From an educational standpoint, providing students with opportunities to design systems that can
adapt to changing circumstances offers a richer learning experience than simply optimizing for fixed
problems. Such challenges cultivate not just problem-solving skills but also meta-reasoning [6],
time management under computational constraints, and a deeper understanding of the exploration-

2

exploitation trade-off. Incorporating adaptive challenges is particularly relevant in AGI education,
where fostering the ability to handle novelty is a core objective.

Addressing these limitations, I introduce the Othello AI Arena, a novel benchmark framework
specifically designed to evaluate the adaptive intelligence of AI systems. This is grounded in the belief
that a key aspect of AGI is the ability to quickly analyze an unfamiliar environment and synthesize
an effective strategy within a limited timeframe. The Othello AI Arena provides a platform where
participants must develop intelligent systems capable of this rapid adaptation. The Othello AI Arena
is accessible at https://sundong.kim/courses/agi25sp/othello-leaderboard/hw2.html

Figure 1: Screenshot of the Othello AI Arena web interface on the "8× 8 (Partial C-Squares-cw)"
stage. The leaderboard displays the performance of various strategies, including a generated intelligent
system strategy.

2 The Othello AI Arena Framework

The Othello AI Arena is a comprehensive platform for evaluating intelligent systems’ adaptive
capabilities in Othello [11]. It comprises core components, a structured challenge design with diverse
environmental variations, and a defined API for system-environment interaction.

3

https://sundong.kim/courses/agi25sp/othello-leaderboard/hw2.html

2.1 System Architecture

The modular architecture includes the User Interface (UI), Core Game Engine, Intelligent System
Execution Environment, Evaluation Module, and Logging and Analysis System. Figure 3 illustrates
their interaction. The UI (hw2.html, app.js, game-ui.js) provides web-based visualization and
management. The Core Game Engine (game-core.js) implements Othello rules and stage varia-
tions. The Execution Environment (intelligent-system-loader.js) safely runs submitted code,
enforcing Tanalysis (≈ 60 seconds) for strategy generation (analyzeStage) and Tgame (≈ 10 seconds
total) for game execution. The Evaluation Module (tournament.js) manages tournaments and
metrics. The Logging and Analysis System (game-logger.js) records detailed game data for post-
hoc analysis (Using-game-logs-for-world-model-learning.md). The system flow involves
system upload, analyzeStage execution per stage within Tanalysis, returning a strategy, and game
execution using the strategy under Tgame, with logging throughout.

Othello Arena System Architecture

Core Layer

game-core.js
Board Management, Move Validation

game-controller.js
Game Flow, AI Execution

game-logger.js
Game Recording, Storage

constants.js
Game Constants Definition

UI Layer

game-ui.js
Board Rendering, User Input

game-rollout.js
Game Replay

Strategy Layer

strategies.js
AI Strategy Management,

Compilation

intelligent-system-loader.js
Advanced AI System Analysis,

Strategy Generation

Competition Layer
tournament.js

Tournament Management, Leaderboard

app.js
Main Application Initialization

Data Layer
stages.js (Stage Configurations)

Entry Point
hw2.html + style.css

Data Flow: →

Figure 2: Overall system architecture of the Othello AI Arena, depicting modular layers and data
flow. Intelligent systems interact primarily with components within the Strategy Layer.

2.2 Challenge Design

The challenge uses public (for development) and private (unseen for evaluation) stages to assess real-
time adaptation. Stages feature variations probing different cognitive aspects. I categorize variations
(stages-extended.js) not limited to below settings:

• Structural Variations: Modifications to the physical layout of the board.
– Board Size: Different grid dimensions (e.g., 6 × 6, 10 × 10 from standard 8 × 8). This tests

spatial generalization and the ability to adapt positional evaluation and search strategies to new
scales.

– Blocked Cells: Introducing impassable cells on the board. This challenges pathfinding, region
control, and the re-evaluation of move validity and positional value in a constrained space.

• Rule Variations: Alterations to the fundamental game mechanics.
– Capture Mechanics: Modifying how pieces are captured (e.g., ‘ignore occlusion’ where blocked

cells don’t stop capture lines). This demands rapid rule induction and adaptation of move
simulation and evaluation logic.

4

– Turn Dynamics: Changes to whose turn it is (e.g., ‘fewer pieces continue’ where the player with
fewer pieces takes consecutive turns). This affects temporal planning and requires understanding
and predicting the flow of the game based on piece counts.

– Winning Conditions: Altering the goal of the game (e.g., Reverse Othello, where the player with
the least pieces wins). This challenges goal reorientation and counter-intuitive strategic thinking.

• Initial State Variations: Non-standard starting configurations.

– Non-standard Initial Placement: Pieces starting in unusual positions. This invalidates standard
opening books and requires dynamic early-game strategy generation.

– Pre-placed Special Pieces: Introducing pieces with unique properties or interactions (potential
future extension).

Each variation imposes a cognitive hurdle for the intelligent system within Tanalysis. The generated
task-level strategy function takes board state, player, and valid moves, returning a move within the
cumulative Tgame limit.

2.3 API and Environment Interaction

The Othello AI Arena provides a well-defined API12 that serves as the sole channel through which
the intelligent system can interact with and learn about a new stage during the 60-second analysis
(Tanalysis) phase. Key functions include:

• getValidMoves(board, player): Returns a list of valid moves for a player on a given board
state, respecting the stage’s specific rules.

• simulateMove(board, player, row, col): Simulates the outcome of making a specific
move, returning the resulting board state and number of pieces captured. This is crucial for
exploring game dynamics and evaluating potential move consequences without playing the game.

• evaluateBoard(board, player): Provides an evaluation of a given board state using pre-
defined metrics (e.g., piece count, mobility, corner control). Note that the weights or interpretation
of these metrics might need to be learned or adjusted by the intelligent system based on the stage’s
characteristics (as seen in intelligent-system-template-adv.js).

Systems effectively use these APIs within Tanalysis (e.g., via simulation-based learning as in
intelligent-system-template-adv.js) to model the environment and synthesize a strat-
egy. A successful intelligent system effectively utilizes these tools within the time limit. For in-
stance, the template in intelligent-system-template-adv.js uses api.simulateMove and
api.getValidMoves extensively in its self-play loop to explore the stage’s game dynamics and
collect data (e.g., position win rates, evidence for rule variations) from which it could learn a tailored
strategy. This process exemplifies how systems must learn an environmental model and synthesize a
strategy through active interaction constrained by time and the API.

Game logging (game-logger.js) captures detailed information about every move and board
state during gameplay. While not directly part of the ‘analyzeStage‘ API for the current
stage analysis, these logs from previous games on public stages can potentially be leveraged
by an intelligent system during its analysis phase to transfer knowledge or identify patterns
(Using-game-logs-for-world-model-learning.md).

Move detailed API descriptions and code snippets to Appendix.

3 Meta-Learning Formulation and Adaptation Mechanisms

The adaptation task in the Othello AI Arena can be formalized as follows. Let S = {s1, s2, . . . , sN}
be the set of possible game stages, where each stage s ∈ S is defined by its board configuration, rule
set, and initial state. Some stages are public (s ∈ Spublic), while others are private and unseen during
development (s ∈ Sprivate). An intelligent system I is evaluated on its ability to adapt to a given
stage s.

1https://sundong.kim/courses/agi25sp/othello-leaderboard/Intelligent-system-API-reference/
2https://sundong.kim/courses/agi25sp/othello-leaderboard/Using-game-logs-for-world-model-learning/

5

https://sundong.kim/courses/agi25sp/othello-leaderboard/Intelligent-system-API-reference/
https://sundong.kim/courses/agi25sp/othello-leaderboard/Using-game-logs-for-world-model-learning/

For each stage s, the intelligent system I is granted a limited analysis time Tanalysis ≈ 60 seconds.
During this time, I can interact with the environment defined by s solely through a predefined API
(as described in Section 2.3). The goal of the system during this phase is to output a task-specific
strategy function fs:

I(s,API)
Tanalysis−−−−→ fs (1)

This function fs takes the current board state b, player ID p, and set of valid moves M as input, and
must return a chosen move. The cumulative time taken by fs across all its calls within a single game
is limited to Tgame ≈ 10 seconds:∑

moves in game

Time(fs(b, p,M) → m) ≤ Tgame (2)

The performance of the intelligent system I on stage s is evaluated based on the effectiveness of the
generated strategy fs in playing games on stage s. The overall evaluation score for system I is a
composite metric considering various factors across a set of evaluation stages Seval ⊆ Sprivate. Key
metrics (Section 4.1) are Task Performance (P), Adaptation Speed (A), Efficiency (E), Generalization
(G), and Robustness (R). This aligns with few-shot adaptation [1] under tight constraints.

3.1 Adaptation Strategies under Time Constraints

Effectively addressing the Othello AI Arena challenge requires intelligent systems to devise strategies
for analyzing a new environment and generating a tailored strategy within the Tanalysis time limit. This
involves an exploration-exploitation trade-off: how much time should be spent exploring the new
environment’s dynamics versus optimizing the strategy based on the acquired knowledge?

Successful adaptation mechanisms in this context often involve a combination of techniques as:

• Environmental Modeling through Interaction: Since the intelligent system does not have explicit
knowledge of the specific rule or structural variations of a novel stage beyond what is revealed
through interaction via the API, it must learn an implicit or explicit model of that environment’s
dynamics. A common approach, demonstrated in intelligent-system-template-adv.js,
is to perform rapid self-play simulations using the provided API functions (getValidMoves,
simulateMove, evaluateBoard). By playing a large number of simulated games (≈ 3000 games
in the template) within the Tanalysis window, the system can:3

– Infer the rules of piece movement and capture, including any variations like ‘ignore occlusion’
or ‘fewer pieces continue’ (as shown by the rule detection logic in the template).

– Gather statistics on the value of different board positions or move sequences in the context of the
current stage (e.g., calculating position win rates in the template).

– Understand the typical game flow and identify effective opening sequences for this specific
environment.

• Learning Environmental Features: Based on the data gathered through simulation or initial
board inspection, the system can identify key features of the environment, such as board size
(stageConfig.boardSize), presence of blocked cells (hasBlockedCells in the code snippet),
or detected rule variations. These features inform the subsequent strategy generation.

• Adaptive Strategy Synthesis: Using the learned environmental model and identified features, the
intelligent system synthesizes a strategy function fs. This can involve:

– Adjusting parameters of a general Othello strategy template (e.g., modifying positional weights
or search depth based on board size or blocked cells).

– Selecting from a portfolio of pre-existing strategy components or heuristics based on the detected
environmental features.

– Constructing a new strategy using learned elements, such as a data-driven positional value
matrix (positionValueMatrix) or an opening book (openingBook) derived from the self-
play simulations in the current stage.

3Notably, this level of simulation (≈ 3000 games) is significantly higher than what a human typically requires
(e.g., 3-4 games) to grasp the rules and achieve intermediate play, highlighting a current difference in learning
efficiency between such systems and human adaptability [7].

6

• Efficient Time Allocation: The Tanalysis constraint necessitates a trade-off between the depth of
environmental exploration (e.g., number of simulations) and the complexity of the strategy synthesis
process. Successful systems are expected to adaptively manage the total Tgame budget, spending
more time exploring highly novel environments and perhaps relying on very fast heuristics or
shallow search for familiar moves to stay within the cumulative 10-second limit.

This process requires a meta-cognitive ability to understand the task at hand (the specific stage), assess
what information is needed for effective play, and efficiently acquire and utilize that information
within the given time budget.

3.2 Connection to General Intelligence

The challenges posed by the Othello AI Arena are deeply connected to the core principles of general
intelligence. True AGI is not merely about excelling at a single task but demonstrating robust
performance across a wide range of tasks and the capacity to adapt to novel ones.

• Rapid Task Acquisition: The limited-time adaptation challenge directly evaluates a system’s
ability to quickly understand and become proficient in a new task (stage), a fundamental aspect of
intelligent behavior.

• Environmental Modeling: Adapting to unseen rule and structural variations requires building or
updating an internal model of the environment’s dynamics. The simulation-based learning approach
in intelligent-system-template-adv.js is one method for achieving this.

• Transfer Learning and Generalization: Effective intelligent systems should leverage knowledge
gained from public stages or prior experience to accelerate adaptation on private stages [10]. This
requires abstracting principles that generalize across different Othello variants.

• Meta-Cognition and Resource Management: The time constraints compel systems to reason
about their own cognitive processes – deciding how to allocate the Tanalysis budget, when to stop
exploring, and which learning methods are most efficient for the given stage.

• Flexible Strategy Synthesis: Instead of relying on fixed algorithms, intelligent systems must be
able to compose or modify strategies based on learned environmental properties, demonstrating
strategic flexibility.

By providing a controlled yet challenging environment for evaluating these capabilities, the Othello
AI Arena serves as a valuable microcosm for studying and advancing the development of general
intelligent agents.

4 Evaluation Methodology and Dataset Potential

Evaluating adaptive intelligence requires metrics and methodologies that go beyond traditional
performance measures in static environments. The Othello AI Arena employs a multi-faceted approach
to assess the capabilities of submitted intelligent systems and offers the potential for a valuable dataset
for future research.

4.1 Evaluation Metrics

Performance of intelligent systems is evaluated based on several key dimensions, designed to capture
different facets of adaptive intelligence:

• Task Performance (P): This is the most straightforward metric, measuring the success of the
generated strategy function (fs) in playing games on the target stage s. It is typically quantified
by win rate, average score difference against various opponents (including built-in strategies like
Random, Greedy, Corners, Positional, and potentially other submitted intelligent systems), and the
number of pieces controlled at the end of the game.

• Adaptation Speed (A): This measures how quickly an intelligent system is able to generate an
effective strategy for a new stage. In the context of the 60-second analysis limit, adaptation speed
can be implicitly assessed by the performance of the generated strategy in the initial games played
on a private stage. A system that rapidly identifies key environmental features and generates a

7

reasonable strategy will likely perform better early on than one that is slow to understand the new
environment. Future metrics could involve explicitly measuring performance within a fixed number
of initial moves or games on the new stage.

• Efficiency (E): This dimension evaluates the computational cost of the intelligent system within
the imposed time limits. It includes:

- Analysis Time Utilization: How effectively the system uses the allocated Tanalysis (≈ 60 seconds).
This is measured by the actual time taken by the analyzeStage function. Systems that exceed
this limit fail to produce a strategy.

- Game Time Utilization: How effectively the generated strategy function fs uses its total game
time budget of ≈ 10 seconds across all moves in a single game. Exceeding this cumulative limit
results in a time forfeit. This constraint necessitates fast individual move computations, typically
on the order of tens or a couple of hundred milliseconds per move.

• Generalization (G): A critical measure of adaptive intelligence is the ability to perform well on
unseen tasks. Generalization is assessed by comparing the performance of intelligent systems on
the public training stages versus the private evaluation stages. A small performance drop on private
stages indicates strong generalization capabilities.

• Adaptation Robustness (R): This is evaluated by testing the system’s consistent performance
across a variety of different, challenging stages, including those with combinations of structural and
rule variations. A system that maintains strong performance across diverse unseen environments
demonstrates high adaptation robustness.

A final evaluation score for an intelligent system is computed as a weighted combination of these
dimensions, allowing the benchmark to highlight systems that are not just strong players but are also
fast, efficient, and robust adaptors to novel environments.

Central to the philosophy of the Othello AI Arena, and aligned with definitions of intelligence
emphasizing skill-acquisition efficiency (e.g., [4]), is the concept that intelligence is demonstrated
not merely by high performance (skill), but by the efficiency with which that skill is acquired and
generalized to novel situations, controlling for prior knowledge and experience. From this perspective,
a system that relies heavily on a large amount of pre-encoded prior knowledge tailored to potential
variations might be considered less intelligent than one that can achieve comparable performance
and generalization with less prior knowledge, by more effectively learning and adapting from limited
exposure to the new environment.

This understanding motivates potential benchmark design choices, such as imposing limits on the
size of the intelligent system (as a proxy for the amount of prior knowledge it contains), or restricting
access to external information sources or powerful pre-trained models (like large language models)
during the time-constrained analysis phase. Similar to approaches seen in benchmarks like the ARC-
prize, such constraints would further emphasize the system’s ability to generalize and adapt efficiently
based on its intrinsic capabilities and the limited information available within the benchmark’s
environment, rather than relying on extensive external resources.

4.2 Tournament Setup

The evaluation of intelligent systems and their generated strategies is conducted using an automated
tournament system (tournament.js). While referred to as a tournament, the evaluation on each stage
follows a round-robin format. Submitted intelligent systems analyze each private stage sequentially
within the Tanalysis limit, producing a tailored strategy function (fs) for that specific stage. These
generated strategies then compete against each other and against a set of baseline built-in strategies
(e.g., Random, Greedy, Positional from strategies.js), as well as various advanced strategies
(including those inspired by Logistello [3]), on the corresponding stage.

For each stage in the evaluation set:

1. Each intelligent system’s analyzeStage function is executed with the stage configuration
and API, strictly limited to Tanalysis.

2. If a strategy function fs is successfully generated within the time limit, it is entered into the
round-robin competition for stage s.

8

3. In the round-robin, each generated strategy plays against every other strategy (including
baselines and advanced strategies) as both Black and White.

4. Strategies compete in games on stage s, with each strategy function’s total time for the entire
game limited to Tgame ≈ 10 seconds.

5. Match results (win/loss/draw, final scores) are recorded by the logging system
(game-logger.js).

6. Performance metrics (P,A,E) are calculated for each generated strategy on stage s.

After evaluating systems across all private stages, the Generalization (G) and Robustness (R) met-
rics are computed. The final leaderboard, prominently displayed on the web interface (Top right
corner of Fig 1 illustrates a sample leaderboard display), is then generated based on the aggregated
weighted scores, with the Task Performance (P) metric serving as the primary visual representation
of evaluation results for each strategy on a given stage.

4.3 Dataset Structure and Potential

The Othello AI Arena platform is designed to generate a rich and unique dataset for research into
adaptive AI. A key feature enabling this is the "Save Log" function, which allows users to export
comprehensive data from individual games or full tournaments for offline analysis. This data serves
as a valuable record of intelligent system behavior and environmental interactions under various
conditions. For every evaluation run of an intelligent system on a stage, the system captures detailed
information, including:

• Stage Configuration: Full details of the environment presented.

• Intelligent System Code: Source code capturing the adaptive logic.

• Generated Strategy Code: Source code of the task-level strategy function.

• Analysis Process Logs & Time: Outputs and time usage during the Tanalysis phase, offering insight
into the analysis and learning process.

• Game Logs & Results: Detailed records of gameplay, including move sequences, board states,
actions, time usage per move, and final outcomes (game-logger.js).

The detailed game data can be exported in two formats: a human-readable text log and a structured
JSON format for automated analysis. See Appendix for examples and further details.

5 Benchmark Insights from Preliminary Experiments

Full-scale experimental results involving a cohort of diverse intelligent systems across the complete
set of private stages are currently being collected as part of an ongoing educational course. How-
ever, preliminary observations from pilot tests with prototype intelligent systems (e.g., variants of
intelligent-system-template-adv.js) and received questions provide valuable insights into
the types of results the Othello AI Arena yields and the patterns of adaptation observed.

5.1 Illustrative Tournament Results

Figure 1 shows results from a pilot tournament on "8x8 (Partial C-Squares-cw)", including built-in,
advanced, and a prototype intelligent system’s generated strategy. Strategies are ranked by Task
Performance (P)—Win Rate.

• Simple strategies like Random and Greedy show relatively lower performance on the leaderboard.

• More sophisticated fixed strategies like smart-lv2 (from smart-lv2.js, having alpha-beta pruning
with reasonable MCTS depth, and some opening books with robust heuristics) perform better.

• The strategy generated by the prototype intelligent system is competitive, outperforming some fixed
strategies but not necessarily the best-performing ones. This highlights the challenge: generating a
near-optimal strategy for a novel environment within a strict time limit is difficult, but achievable
to a degree that surpasses non-adaptive or poorly generalizing fixed strategies.

9

This illustrative example demonstrates how the Othello AI Arena provides quantitative comparisons
of strategy performance on specific, potentially unseen, environmental variations.

5.2 Preliminary Observations on Adaptation Patterns

Beyond win/loss records, the Othello AI Arena enables deeper analysis of adaptation. Preliminary
observations from pilot tests suggest several patterns:

• Time Allocation: Systems varied in using the Tanalysis budget. A balanced approach between
environmental modeling (simulation) and strategy synthesis likely correlates with better adaptation.

• Game Time Limit Impact: The strict Tgame limit (≈ 10s total) constrains computationally intensive
strategies (like deep MCTS), favoring efficient, adaptive heuristics.

• Simulation-Based Learning: Self-play simulations within Tanalysis improved robustness to struc-
tural variations by learning stage-specific values.

• Rule Adaptation Challenges: Adapting to subtle rule variations appeared more challenging than
structural changes, often requiring explicit detection logic or highly flexible simulation.

• Generalization Gap: Fixed strategies showed larger performance drops on private vs. public stages
than adaptive systems, illustrating the specialization/generalization trade-off.

These preliminary findings demonstrate the benchmark’s ability to reveal distinct adaptation patterns
under time constraints.

5.3 Potential for Analysis and Extension

The detailed game logs and analysis outputs collected by the Othello AI Arena (as described in Section
4.3) enable extensive post-hoc analysis of adaptation processes. Researchers can analyze correlations
between analysis behaviors and strategy quality, system strategy adjustments, the relationship between
strategy complexity and performance, and successes/failures in adapting to variations through log
inspection. This transparency is a key strength supporting fine-grained analysis.

Building upon this framework, the Othello AI Arena is highly extensible and offers numerous
avenues for future work and more complex challenges. These potential expansions aim to explore
broader concepts of generalization and more sophisticated adaptive mechanisms. This could involve
introducing challenges with incomplete information, such as limited observation or reasoning under
uncertainty, or exploring multi-agent interaction scenarios, like N-Player or cooperative games.
Further complexity could be added through dynamic environments where rules or configurations
change during gameplay, or by requiring cross-domain adaptation to different game mechanics or
environments. Additionally, the evaluation itself could evolve to include adaptive elements, such
as variable time limits or automated curriculum generation based on system performance. These
directions provide a roadmap for increasing benchmark complexity and pushing the boundaries of
intelligent adaptation research.

5.4 Conclusion

In conclusion, this paper introduces the Othello AI Arena, a novel benchmark designed to address the
critical gap in evaluating AI systems’ capacity for limited-time adaptation to unseen environments.
I frame this challenge as a meta-learning problem, where participants develop intelligent systems
capable of analyzing a novel Othello stage configuration and rules within a strict time limit (Tanalysis ≈
60s) to generate a tailored, high-performing strategy. The benchmark explicitly evaluates the meta-
level intelligence of the system, separating it from the task-level performance of the generated strategy.
The Othello AI Arena platform supports this higher-level competition, enabling the submission and
evaluation of adaptive intelligent systems through tournaments with multi-dimensional metrics. While
preliminary results offer initial insights into adaptation patterns, the comprehensive data generated
also provides a valuable resource for analyzing the adaptation process itself. By focusing on rapid,
intelligent adaptation under realistic constraints, the Othello AI Arena serves as a valuable tool for
fostering and evaluating progress towards artificial general intelligence.

10

References
[1] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models
Are Few-Shot Learners. In NeurIPS, 2020.

[2] Guga Burduli and Jie Wu. Time Management in a Chess Game through Machine Learning.
International Journal of Parallel, Emergent and Distributed Systems, pages 14–34, 2022.

[3] Michael Buro. LOGISTELLO — A Strong Learning Othello Program. 19th Annual Conference
Gesellschaft für Klassifikation, 1995.

[4] François Chollet. On the Measure of Intelligence. arXiv:1911.01547, 2019.

[5] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability with process-supervised reward
models. arXiv preprint arXiv:2501.12948, 2025.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In ICML, 2017.

[7] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
Machines That Learn and Think Like People. Behavioral and Brain Sciences, 40:e253, 2017.

[8] R. Lake and M. Hines. A world-championship-level othello program. Artificial Intelligence,
18(2):197–222, 1982.

[9] I. Liao and A. Gu. Minizero: Comparative analysis of alphazero and muzero on go, othello, and
atari. arXiv preprint arXiv:2310.11305, 2023.

[10] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A Generalist Agent. Transactions on
Machine Learning Research, 2022.

[11] Brian Rose. Othello: A Minute to Learn... A Lifetime to Master. Anjar Co., 2005.

[12] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

11

A System Architecture

The Othello AI Arena’s modular architecture is designed for clarity, maintainability, and extensibility,
facilitating the development and evaluation of intelligent systems. Figure 2 presents a comprehensive
overview of the system’s key components and their hierarchical interactions, with a specific focus on
how data and control flow through the various layers.

The architecture is broadly divided into several logical layers: the Core Layer handling fundamental
game logic, the UI Layer for rendering and interaction, the Strategy Layer managing AI behaviors,
and the Competition Layer orchestrating tournaments. These layers are all orchestrated by the main
app.js and rely on a Data Layer for configurations and an Entry Point for application loading.
This layered approach allows participants to focus on developing the Intelligent System (primarily
interacting with the Strategy Layer) while the platform handles underlying complexities.

App Initialization
(app.js)

Game Logic
(game-core.js)

Game Controller
(game-controller.js)

Game UI
(game-ui.js)

Stage Configurations
(stages.js)

Game Logger
(game-logger.js)

Game Replay
(game-rollout.js)

Tournament System
(tournament.js)

Strategy Framework
(strategies.js)

Built-in Strategies
• Random: selects random moves

• Greedy: maximizes captures
• Corners: prioritizes corner positions

• Positional: uses position weights

Custom Strategy
Function (studentStrategy)

Intelligent System Loader
(intelligent-system-loader.js)

Analysis Function (analyzeStage)
Process stage configuration to generate strategy

Self-Play Engine
Runs thousands of simulated games

Data Collection
Tracks winning moves and patterns

Rule Detection
Identifies special rules active in stage

Position Value Matrix
Calculates optimal weights for each position

Opening Book
Identifies strong starting sequences

Adaptive Logic
Handles detected special rules

Optimized Strategy Function
Tailored to specific stage configuration

Provides initial board state
and special rules

Provides simulation API
(moves, captures, evaluation)

Figure 3: System Architecture of the Othello AI Arena (Gray part) and its interaction with the
potential intelligent system (Orange part).

B Core Modules and Implementation Details

The Othello AI Arena is built upon a modular JavaScript architecture, separating concerns into
distinct modules that interact through well-defined interfaces. This design facilitates maintainability,
extensibility, and clarity in understanding the system’s operation. Below, I detail the core modules
that underpin the arena’s functionality, illustrating their responsibilities and key code components.

B.1 Game Core Engine

The game-core.js module is the heart of the Othello Arena, implementing the fundamental game
rules and variations. It manages the board state, validates moves, executes piece captures, and
determines the next player based on the active stage’s rules. This module is critical as its behavior
(e.g., how isValidMove or makeMove function under different rule variations) is what intelligent
systems must infer through observation via the API.

• Key Responsibilities: Board initialization and management, move validation (isValidMove),
move execution (makeMove), piece counting (countDiscs), and determining the next player
(determineNextPlayer).

• Illustrative Code Snippet (Move Execution Logic): This snippet demonstrates how a move is
executed, involving placing a piece and flipping captured pieces. The internal logic for flipping

12

pieces must implicitly handle stage-specific rules like ‘ignore occlusion’ without exposing these
rules to the intelligent system API.

1 // Excerpt from game-core.js: Core move execution logic
2 function makeMove(row, col, player) {
3 if (!isWithinBoard(row, col) || board[row][col] !== GAME_CONSTANTS.EMPTY) return

false;↪→
4 board[row][col] = player; // Place the player's piece
5

6 const opponent = player === GAME_CONSTANTS.BLACK ? GAME_CONSTANTS.WHITE :
GAME_CONSTANTS.BLACK;↪→

7 const directions = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1,
0], [1, 1]];↪→

8

9 // Internal rule application based on currentStage configuration (not visible to
AI via API)↪→

10 const stageConfig = currentStage || stages[0]; // Internal to game-core
11 const ignoreOcclusion = stageConfig.ignoreOcclusion || false; // Internal flag
12

13 const capturedPieces = [];
14 // Logic to find and flip pieces, considering ignoreOcclusion if true
15 // The AI observes the result via simulateMove, inferring the rule.
16 for (const [dr, dc] of directions) {
17 let r = row + dr;
18 let c = col + dc;
19 const toFlip = [];
20 let foundBlocked = false;
21 let foundOpponent = false;
22

23 while (isWithinBoard(r, c)) {
24 if (board[r][c] === opponent) {
25 toFlip.push([r, c]);
26 foundOpponent = true;
27 } else if (board[r][c] === GAME_CONSTANTS.BLOCKED) {
28 foundBlocked = true;
29 if (!ignoreOcclusion) { // If occlusion is not ignored, break
30 break;
31 }
32 } else if (board[r][c] === GAME_CONSTANTS.EMPTY) {
33 break;
34 } else if (board[r][c] === player) {
35 if (foundOpponent && toFlip.length > 0 && (!foundBlocked ||

ignoreOcclusion)) {↪→
36 for (const [fr, fc] of toFlip) {
37 board[fr][fc] = player;
38 capturedPieces.push([fr, fc]);
39 }
40 }
41 break;
42 }
43 r += dr;
44 c += dc;
45 }
46 }
47 // ... (rest of makeMove function, e.g., logging) ...
48 return true; // Or false if move was invalid
49 }

Note: The ignoreOcclusion flag is an internal detail of the game-core.js module, used by the
platform to define the specific behavior of simulateMove and getValidMoves for a given stage.
Intelligent systems must infer the presence of such rules through observing the API’s behavior, not
by direct access to stageConfig flags.

13

B.2 Intelligent System Execution Environment

The intelligent-system-loader.js module is responsible for securely loading, sandboxing,
and executing submitted intelligent system code. It enforces the strict Tanalysis time limit for strat-
egy generation and provides the limited API through which intelligent systems interact with the
environment.

• Key Responsibilities: Code compilation (compileSystem), secure execution in a Web Worker,
time limit enforcement, and exposing the environment API (getValidMoves, simulateMove,
evaluateBoard) to the intelligent system.

• Illustrative Code Snippet (Worker-based Execution): This shows the core mechanism for
running student-submitted analyzeStage functions in a sandboxed environment, managing time,
and passing the API.

1 // Excerpt from intelligent-system-loader.js: Core analysis execution within a
Worker↪→

2 async analyzeStageWithSystem(systemName, stageConfig, systemCode) {
3 return new Promise((resolve, reject) => {
4 const worker = new Worker(URL.createObjectURL(new Blob([`
5 self.onmessage = function(e) {
6 const { code, stageConfig, initialBoard, validMoves, api } = e.data;
7 const startTime = performance.now();
8 const analyzeStage = new Function('stageConfig', 'initialBoard',

'validMoves', 'api',↪→
9 code + '\nreturn analyzeStage.apply(null, arguments);'

10);
11 try {
12 const strategyFunction = analyzeStage(stageConfig, initialBoard,

validMoves, api);↪→
13 self.postMessage({ status: 'success', strategyFunction:

strategyFunction.toString() });↪→
14 } catch (error) {
15 self.postMessage({ status: 'error', message: error.message,

stack: error.stack });↪→
16 }
17 };
18 `], { type: 'application/javascript' })));
19

20 // Time limit enforced externally (in loader, not worker code shown here)
21 const timeoutId = setTimeout(() => { worker.terminate(); reject(new

Error("Analysis timed out")); }, this.timeLimit);↪→
22

23 worker.onmessage = (e) => {
24 clearTimeout(timeoutId);
25 if (e.data.status === 'success') { /* ... process strategy function ...

*/ }↪→
26 else { /* ... handle error ... */ }
27 };
28 worker.onerror = (error) => { clearTimeout(timeoutId); reject(error); };
29

30 worker.postMessage({ code: systemCode, stageConfig, initialBoard,
validMoves, api: this.api });↪→

31 });
32 }

B.3 Strategy Management

The strategies.js module manages both built-in AI strategies and custom strategies uploaded by
participants. It handles the storage, retrieval, and runtime compilation of strategy code.

• Key Responsibilities: Defining standard Othello strategies (e.g., Random, Greedy, Posi-
tional), saving and loading custom strategy code (e.g., from localStorage), and providing

14

getCompiledStrategy to retrieve an executable function for a given strategy ID. This module
serves the GameController by providing the actual move-making functions.

• Illustrative Code Snippet (Strategy Retrieval and Compilation): This demonstrates how the
arena retrieves an executable strategy, prioritizing cached compiled functions for efficiency.

1 // Excerpt from strategies.js: Retrieving and compiling strategies
2 function getCompiledStrategy(controllerId, player) {
3 // Handle custom strategies (student-submitted)
4 if (controllerId.startsWith('custom_')) {
5 const strategyName = controllerId.replace('custom_', '');
6 // Prioritize cached compiled function (from intelligent-system-loader)
7 if (window.compiledIntelligentSystems[strategyName]) {
8 return window.compiledIntelligentSystems[strategyName]; // Function

stored by intelligent-system-loader↪→
9 }

10 // Fallback: compile from stored code string if not cached
11 if (savedStrategies[strategyName]) {
12 const code = savedStrategies[strategyName];
13 try {
14 const compiledFunc = new Function('boardArg', 'playerArg',

'validMovesArg', 'makeMoveFunc',↪→
15 `${code}\nreturn studentStrategy(boardArg, playerArg,

validMovesArg, makeMoveFunc);`);↪→
16 compiledStudentAIs[strategyName] = compiledFunc; // Cache it
17 return compiledFunc;
18 } catch (e) { console.error(`Compile error for ${strategyName}:`, e);

return null; }↪→
19 }
20 }
21 // Handle built-in strategies
22 else if (builtInStrategies[controllerId]) {
23 return builtInStrategies[controllerId]; // Directly use built-in functions
24 }
25 return null;
26 }

B.4 Game Flow and UI Management

The game-controller.js and game-ui.js modules work in tandem to orchestrate the game flow
and manage the web-based user interface.

• GameController (game-controller.js): Manages the overall game loop, including starting/re-
setting games, calling AI strategies for moves, and determining game-over conditions. It also tracks
player time usage.

• OthelloUI (game-ui.js): Handles all aspects of the graphical user interface, including rendering
the Othello board, updating scores and timers, displaying game status messages, and processing
human player inputs.

B.5 Logging and Replay System

The game-logger.js and game-rollout.js modules are dedicated to recording game history and
enabling post-game analysis and visualization.

• GameLogger (game-logger.js): Provides a comprehensive system for recording every move,
board state, player turn, and captured piece count during a game. It also stores game results for the
leaderboard and supports saving data to localStorage.

• GameRollout (game-rollout.js): Utilizes the data from GameLogger to allow users to replay
any past game, navigate through moves, and adjust playback speed. It dynamically reconstructs the
board state at any point in the game.

15

B.6 Tournament System

The tournament.js module orchestrates automated tournaments between submitted intelligent
systems and built-in strategies.

• Key Responsibilities: Managing tournament rounds, recording match outcomes, calculating and
displaying the leaderboard, and saving/loading tournament data. It provides the competitive envi-
ronment for evaluating adaptive performance across private stages.

C Othello Arena API Reference

The Othello AI Arena provides the following core API functions for developing intelligent systems,
allowing them to probe and understand the environment:

• getValidMoves(board, player): Returns a list of valid moves for a player on a given board
state. This function dynamically applies the stage’s underlying rules, meaning the intelligent system
must observe its behavior to infer rule variations.

• simulateMove(board, player, row, col): Simulates the outcome of making a specific
move, returning the resulting board state and number of pieces captured. The behavior of this
function (e.g., how pieces are captured) directly reflects the stage’s rules, allowing the intelligent
system to deduce capture mechanics without explicit rule disclosure.

• evaluateBoard(board, player): Provides an evaluation of a given board state using pre-
defined metrics (e.g., piece count, mobility, corner control). The intelligent system may need to
learn or adjust the interpretation of these metrics based on observed game dynamics.

An intelligent system is implemented through the analyzeStage function, which must analyze the
stage within a strict time limit (approximately 60 seconds) and return a tailored strategy function.
The returned strategy function is then called during each turn of the game to determine a move.

1 // Basic Intelligent System Template
2 function analyzeStage(stageConfig, initialBoard, validMoves, api) {
3 // Perform stage analysis within the ~60-second limit
4 console.log("Analyzing stage: " + stageConfig.name);
5

6 // Identify static environmental features (e.g., board dimensions, presence of
blocked cells)↪→

7 const boardSize = initialBoard.length;
8 const hasBlockedCells = initialBoard.some(row =>
9 row.some(cell => cell === GAME_CONSTANTS.BLOCKED)); //

GAME_CONSTANTS.BLOCKED is a known constant↪→
10

11 // The core challenge: Adapt strategy parameters based on inferred rules and
board properties.↪→

12 // This 'optimizeParameters' function (conceptual) would perform simulations and
deductions.↪→

13 const params = optimizeParameters(initialBoard, api);
14

15 // Return the strategy function.
16 // This function will be called during each game turn (cumulative ~10-second

limit per game).↪→
17 return function(board, player, validMoves) {
18 if (validMoves.length === 0) return null;
19

20 // This function decides the best move for the current turn,
21 // utilizing the parameters and understanding gained during analysis.
22 return selectBestMove(board, player, validMoves, params);
23 };
24 }

Key patterns for effectively utilizing the API include:

16

1. Thoroughly understanding board characteristics and inferring rule variations during the
initial analysis phase through active probing via the API.

2. Efficiently using simulateMove for game tree exploration and evaluation function opti-
mization, which helps in implicitly learning the game’s dynamic rules.

3. Performing complex computations (like extensive simulations or rule induction) during the
analysis phase and leveraging the results within the strategy function.

4. Employing memoization and optimization techniques to minimize execution time during
gameplay.

C.1 Example Intelligent System: Advanced Template

This example demonstrates a more sophisticated intelligent system that performs self-play simulations
to learn about the stage, detect rules, and generate an adaptive strategy. It showcases how the provided
API functions can be leveraged within the analysis time limit (Tanalysis) to synthesize a high-
performing strategy for a novel environment.

1 /**
2 * Function that intelligent systems must implement to analyze a stage and generate

a strategy↪→
3 *
4 * @param {Object} stageConfig - Stage configuration object (contains name,

boardSize, initial piece positions, but NO explicit rule flags).↪→
5 * @param {Array<Array<number>>} initialBoard - 2D array representing the initial

board state.↪→
6 * @param {Array<Object>} validMoves - Valid moves for the first player (Black) on

the initial board.↪→
7 * @param {Object} api - Environment API with methods:
8 * - getValidMoves(board, player): Returns valid moves for a given board state.
9 * - simulateMove(board, player, row, col): Returns the resulting board and captured

count for a move.↪→
10 * - evaluateBoard(board, player): Provides evaluation metrics for a board.
11 * (These API methods internally implement the stage's TRUE rules,
12 * which the intelligent system must infer through observation).
13 *
14 * @returns {Function} Strategy function that will be called during gameplay.
15 */
16 function analyzeStage(stageConfig, initialBoard, validMoves, api) {
17 console.log("=== Starting Environmental Analysis and Strategy Adaptation ===");
18 console.log("Stage:", stageConfig.name, "Board Size:", stageConfig.boardSize);
19

20 // Setup simulation parameters for environmental probing and data collection
21 const NUM_SIM_GAMES = 3000;
22 const MAX_MOVES_PER_GAME = 60;
23 const ANALYSIS_TIME_LIMIT_MS = 55000; // Leave a few seconds buffer for final

strategy compilation↪→
24

25 // Track the start time to adhere to the T_analysis limit
26 const startTime = Date.now();
27

28 // Data structures for storing observations and learned patterns
29 const gameSimulationLogs = []; // Stores detailed logs of simulated games
30 const positionWinRates = {}; // Tracks win rates for specific positions
31 const boardSize = stageConfig.boardSize;
32

33 // Initialize position win rates tracking
34 for (let r = 0; r < boardSize; r++) {
35 for (let c = 0; c < boardSize; c++) {
36 positionWinRates[`${r},${c}`] = { plays: 0, wins: 0, blackPlays: 0,

blackWins: 0, whitePlays: 0, whiteWins: 0 };↪→
37 }
38 }

17

39

40 // Define simple, generic strategies for self-play simulations.
41 // These strategies do not have prior knowledge of rule variations,
42 // they just interact with the API's behavior.
43 const simulationStrategies = {
44 random: function (board, player, moves) {
45 if (moves.length === 0) return null;
46 return moves[Math.floor(Math.random() * moves.length)];
47 },
48 greedy: function (board, player, moves) {
49 if (moves.length === 0) return null;
50 let bestMove = moves[0];
51 let maxCaptures = -1;
52

53 for (const move of moves) {
54 const result = api.simulateMove(board, player, move.row, move.col);
55 if (result.valid && result.capturedCount > maxCaptures) {
56 maxCaptures = result.capturedCount;
57 bestMove = move;
58 }
59 }
60 return bestMove;
61 },
62 // A simple positional heuristic, which might be adapted later
63 basicPositional: function(board, player, moves) {
64 if (moves.length === 0) return null;
65 let bestMove = null;
66 let bestScore = -Infinity;
67

68 // Simple static positional values (can be adapted)
69 const staticWeights = {
70 '8': [
71 [120, -20, 20, 5, 5, 20, -20, 120],
72 [-20, -40, -5, -5, -5, -5, -40, -20],
73 [20, -5, 15, 3, 3, 15, -5, 20],
74 [5, -5, 3, 3, 3, 3, -5, 5],
75 [5, -5, 3, 3, 3, 3, -5, 5],
76 [20, -5, 15, 3, 3, 15, -5, 20],
77 [-20, -40, -5, -5, -5, -5, -40, -20],
78 [120, -20, 20, 5, 5, 20, -20, 120]
79],
80 '6': [
81 [50, -10, 10, 10, -10, 50],
82 [-10, -20, -5, -5, -20, -10],
83 [10, -5, 5, 5, -5, 10],
84 [10, -5, 5, 5, -5, 10],
85 [-10, -20, -5, -5, -20, -10],
86 [50, -10, 10, 10, -10, 50]
87]
88 };
89 const weights = staticWeights[board.length] || staticWeights['8']; //

Use 8x8 as default↪→
90

91 for (const move of moves) {
92 const score = weights[move.row][move.col];
93 if (score > bestScore) {
94 bestScore = score;
95 bestMove = move;
96 }
97 }
98 return bestMove;
99 }

100 };
101

102 // Run self-play simulation games to gather data and observe behaviors

18

103 console.log(`Starting ${NUM_SIM_GAMES} simulation games (analysis time limit:
${ANALYSIS_TIME_LIMIT_MS}ms)...`);↪→

104

105 let gamesCompleted = 0;
106 let totalMovesMade = 0;
107 let analysisTimeoutReached = false;
108

109 for (let gameNum = 0; gameNum < NUM_SIM_GAMES; gameNum++) {
110 if (Date.now() - startTime > ANALYSIS_TIME_LIMIT_MS) {
111 analysisTimeoutReached = true;
112 console.warn(`Analysis time limit reached (${ANALYSIS_TIME_LIMIT_MS}ms).

Stopping simulations.`);↪→
113 break;
114 }
115

116 const gameLog = {
117 moves: [],
118 finalBoard: null,
119 winner: null, // 1: Black, 2: White, 0: Tie
120 scores: { black: 0, white: 0 },
121 turnTransitions: [] // To observe if turns consistently alternate or

not↪→
122 };
123

124 let currentBoard = initialBoard.map(row => [...row]); // Deep copy
125 let currentPlayer = 1; // Black starts
126 let movesInCurrentGame = 0;
127 let consecutivePasses = 0;
128 let gameOver = false;
129

130 // Randomly select two simulation strategies for this game
131 const simStrategyPlayer1 =

Object.values(simulationStrategies)[Math.floor(Math.random() *
Object.keys(simulationStrategies).length)];

↪→
↪→

132 const simStrategyPlayer2 =
Object.values(simulationStrategies)[Math.floor(Math.random() *
Object.keys(simulationStrategies).length)];

↪→
↪→

133

134 while (!gameOver && movesInCurrentGame < MAX_MOVES_PER_GAME) {
135 if (Date.now() - startTime > ANALYSIS_TIME_LIMIT_MS) {
136 analysisTimeoutReached = true;
137 break;
138 }
139

140 const moves = api.getValidMoves(currentBoard, currentPlayer);
141

142 if (moves.length === 0) {
143 consecutivePasses++;
144 if (consecutivePasses >= 2) {
145 gameOver = true; // Game over if both players pass
146 break;
147 }
148 gameLog.turnTransitions.push({ from: currentPlayer, to:

(currentPlayer === 1 ? 2 : 1), pass: true });↪→
149 currentPlayer = (currentPlayer === 1 ? 2 : 1); // Switch player if

current player has no moves↪→
150 continue;
151 }
152

153 consecutivePasses = 0; // Reset pass counter
154

155 const chosenSimStrategy = (currentPlayer === 1) ? simStrategyPlayer1 :
simStrategyPlayer2;↪→

156 const chosenMove = chosenSimStrategy(currentBoard, currentPlayer,
moves);↪→

19

157

158 if (!chosenMove) { // Should ideally not happen if validMoves.length >
0↪→

159 gameOver = true;
160 break;
161 }
162

163 const simResult = api.simulateMove(currentBoard, currentPlayer,
chosenMove.row, chosenMove.col);↪→

164

165 if (simResult.valid) {
166 const prevPlayer = currentPlayer;
167 currentBoard = simResult.resultingBoard; // Update board
168 gameLog.moves.push({ player: prevPlayer, position: chosenMove,

capturedCount: simResult.capturedCount });↪→
169

170 // Update position win rates data
171 const posKey = `${chosenMove.row},${chosenMove.col}`;
172 if (positionWinRates[posKey]) {
173 positionWinRates[posKey].plays++;
174 if (prevPlayer === 1) {
175 positionWinRates[posKey].blackPlays++;
176 } else {
177 positionWinRates[posKey].whitePlays++;
178 }
179 }
180

181 // Determine next player based on observed behavior (this is where
inference matters)↪→

182 const scores = countPieces(currentBoard); // Utility function below
183 let nextPlayerCandidate = (prevPlayer === 1) ? 2 : 1; // Standard

alternate↪→
184

185 // Attempt to infer 'fewer pieces continue' type rule by observing
actual turn transitions↪→

186 // We're looking for patterns where the current player plays again
187 const potentialValidMovesForNextPlayer =

api.getValidMoves(currentBoard, nextPlayerCandidate);↪→
188 if (potentialValidMovesForNextPlayer.length === 0) { // If next

player cannot move, current player might continue or game ends↪→
189 // This simple check doesn't infer complex rules, but models

standard game flow.↪→
190 // A more advanced system would track actual 'next player'

behavior based on api.getValidMoves and piece counts.↪→
191 // For instance, if the game *does* switch players, but then

switches back quickly when piece counts are skewed.↪→
192 }
193

194 // If the game rules cause the same player to move again, the API's
getValidMoves and simulateMove↪→

195 // will reflect that. The AI observes.
196 // For this generic template, we simply switch player. If the actual

game logic allows consecutive turns,↪→
197 // the `api.getValidMoves` for the *next* player would return an

empty array if they were forced to pass,↪→
198 // and the *current* player would get another chance.
199 // The key is that the AI *doesn't know* why it's happening, only

that it's happening.↪→
200 currentPlayer = nextPlayerCandidate; // Proceed with standard turn

alternation for simulation logic↪→
201

202 gameLog.turnTransitions.push({ from: prevPlayer, to: currentPlayer,
pass: false, scoresAfterMove: scores });↪→

203 movesInCurrentGame++;
204 totalMovesMade++;

20

205 } else {
206 console.warn("Invalid move in simulation (should not happen for

valid moves)");↪→
207 gameOver = true;
208 break;
209 }
210 }
211

212 // Game finished - record final state and winner
213 const finalScores = countPieces(currentBoard);
214 gameLog.finalBoard = currentBoard;
215 gameLog.scores = finalScores;
216

217 if (finalScores.black > finalScores.white) { gameLog.winner = 1; }
218 else if (finalScores.white > finalScores.black) { gameLog.winner = 2; }
219 else { gameLog.winner = 0; } // Tie
220

221 // Update position win rates based on game winner
222 for (const move of gameLog.moves) {
223 const posKey = `${move.position.row},${move.position.col}`;
224 const posStats = positionWinRates[posKey];
225 if (posStats && gameLog.winner === move.player) {
226 posStats.wins++;
227 if (move.player === 1) { posStats.blackWins++; } else {

posStats.whiteWins++; }↪→
228 }
229 }
230

231 gameSimulationLogs.push(gameLog);
232 gamesCompleted++;
233 }
234

235 console.log(`Completed ${gamesCompleted} games with ${totalMovesMade} total
moves in ${Date.now() - startTime}ms`);↪→

236

237 // --- Phase 2: Environmental Behavior Analysis and Rule Inference ---
238 // Instead of looking for specific rule names, we analyze observed behaviors for

anomalies.↪→
239 const observedBehaviors = analyzeEnvironmentBehaviors(gameSimulationLogs,

initialBoard, api);↪→
240 console.log("Observed Environmental Behaviors:", observedBehaviors);
241

242 // --- Phase 3: Adaptive Strategy Synthesis ---
243 // Generate a position value matrix based on observed win rates
244 const adaptedPositionValueMatrix = generatePositionValueMatrix(positionWinRates,

boardSize, observedBehaviors);↪→
245

246 // Create an opening book from successful simulated games
247 const derivedOpeningBook = buildOpeningBook(gameSimulationLogs);
248

249 // Return the final, adapted strategy function
250 return createStrategyFunction(adaptedPositionValueMatrix, derivedOpeningBook,

observedBehaviors, boardSize, api);↪→
251

252 // ======================== Utility Functions (Internal to analyzeStage)
========================↪→

253

254 // Counts pieces on a given board state
255 function countPieces(board) {
256 let black = 0, white = 0, empty = 0, blocked = 0;
257 for (let r = 0; r < board.length; r++) {
258 for (let c = 0; c < board[r].length; c++) {
259 if (board[r][c] === 1) black++;
260 else if (board[r][c] === 2) white++;
261 else if (board[r][c] === 0) empty++;

21

262 else if (board[r][c] === 3) blocked++;
263 }
264 }
265 return { black, white, empty, blocked };
266 }
267

268 /**
269 * Analyzes simulation logs to infer environmental behaviors (rules)
270 * without knowing specific rule names beforehand.
271 */
272 function analyzeEnvironmentBehaviors(simLogs, initialBoard, api) {
273 const behaviors = {
274 // High-level observations of turn dynamics
275 consecutiveTurnObserved: false,
276 consecutiveTurnFrequency: 0,
277 consecutiveTurnPlayerBias: { black: 0, white: 0 }, // If one player gets

more consecutive turns↪→
278

279 // High-level observations of capture mechanics
280 captureThroughBlockedCellsObserved: false, // Did a capture happen over

a blocked cell?↪→
281 unusualCapturePatternObserved: false, // More general, did captures seem

off?↪→
282

283 // Observations about winning conditions
284 winConditionReversedObserved: false, // Did lowest score win

unexpectedly?↪→
285 // ... add more abstract behavioral observations
286 };
287

288 let totalTurnTransitions = 0;
289 let consecutiveTurnsCount = 0;
290 let blackConsecutiveTurns = 0;
291 let whiteConsecutiveTurns = 0;
292

293 for (const game of simLogs) {
294 if (game.moves.length < 2) continue;
295

296 // Analyze turn dynamics
297 for (let i = 1; i < game.moves.length; i++) {
298 const prevPlayer = game.moves[i - 1].player;
299 const currPlayer = game.moves[i].player;
300 totalTurnTransitions++;
301 if (prevPlayer === currPlayer) {
302 consecutiveTurnsCount++;
303 if (prevPlayer === 1) blackConsecutiveTurns++;
304 else whiteConsecutiveTurns++;
305 }
306 }
307

308 // Analyze capture mechanics (basic heuristic)
309 // Look for any capture that crosses a blocked cell in the final board

state↪→
310 // This is still a simple heuristic; robust detection would need more

targeted probes.↪→
311 for (const move of game.moves) {
312 const startR = move.position.row;
313 const startC = move.position.col;
314 const player = move.player;
315 const opponent = (player === 1) ? 2 : 1;
316

317 // Re-simulate this move on the board *before* the move to check
intermediate states↪→

318 // This is computationally intensive. A simpler approach is to look
at final board and piece positions.↪→

22

319 // However, a real intelligent system would use API to actively
probe↪→

320 // Create a board state before this move occurred if possible from
logs, or approximate.↪→

321

322 // A more direct probing strategy:
323 // Construct a small, controlled scenario to test a specific

behavior pattern.↪→
324 // This is hard to do generically without knowing board structure.
325 // e.g., if (initialBoard has blocked cells) { try to place a piece,

then simulate. }↪→
326 // For instance: pick a random empty cell, place current player

piece.↪→
327 // Does it flip pieces beyond a blocked cell?
328 // This would be done with direct calls to api.simulateMove on

crafted micro-boards.↪→
329

330 // Example: Try to detect 'capture through blocked cells' by
crafting a minimal board and probing↪→

331 // This would need to happen at the very beginning of analyzeStage,
before main loop.↪→

332 // This template will stick to observations from general self-play
for simplicity.↪→

333 // A very simple check (less robust): Check if any flipped piece in
the log has a blocked cell between it and the origin move.↪→

334 // This is difficult without reconstructing the exact path and board
state for each capture.↪→

335 }
336

337 // Analyze winning condition
338 // If the game winner is the player with FEWER pieces, this suggests a

reversed winning condition↪→
339 const finalScores = game.scores;
340 if (finalScores.black > finalScores.white && game.winner === 2) { //

Black has more pieces, but White wins↪→
341 behaviors.winConditionReversedObserved = true;
342 } else if (finalScores.white > finalScores.black && game.winner === 1) {

// White has more pieces, but Black wins↪→
343 behaviors.winConditionReversedObserved = true;
344 }
345 }
346

347 if (totalTurnTransitions > 0) {
348 behaviors.consecutiveTurnFrequency = consecutiveTurnsCount /

totalTurnTransitions;↪→
349 if (behaviors.consecutiveTurnFrequency > 0.05) { // Threshold for

significance↪→
350 behaviors.consecutiveTurnObserved = true;
351 if (blackConsecutiveTurns > whiteConsecutiveTurns * 1.5) { //

Significant bias towards black↪→
352 behaviors.consecutiveTurnPlayerBias.black =

blackConsecutiveTurns / consecutiveTurnsCount;↪→
353 } else if (whiteConsecutiveTurns > blackConsecutiveTurns * 1.5) { //

Significant bias towards white↪→
354 behaviors.consecutiveTurnPlayerBias.white =

whiteConsecutiveTurns / consecutiveTurnsCount;↪→
355 }
356 }
357 }
358

359 // Example: Probe for ignoreOcclusion at analysis start with a crafted
board↪→

360 // This is a more direct test rather than observing during self-play.
361 // It's still a heuristic, not guaranteed to find all types of hidden

rules.↪→

23

362 const probeBoard = [
363 [0,0,0,0,0,0,0,0],
364 [0,0,0,0,0,0,0,0],
365 [0,0,2,3,1,0,0,0], // Opponent, Blocked, Player (try to capture over

blocked)↪→
366 [0,0,0,0,0,0,0,0],
367 [0,0,0,0,0,0,0,0],
368 [0,0,0,0,0,0,0,0],
369 [0,0,0,0,0,0,0,0],
370 [0,0,0,0,0,0,0,0]
371];
372 // Scale probe board to current board size if needed, or create a generic

smaller one.↪→
373 // Assume probe board is compatible with boardSize or it's a fixed small

test.↪→
374

375 // Simulate placing a piece that should capture over the blocked cell (if
rules allow)↪→

376 // If current player is 1 (Black), they want to capture White (2) over
Blocked (3).↪→

377 const simulatedProbeResult = api.simulateMove(probeBoard, 1, 2, 0); // Try
to capture from (2,0) over (2,1),(2,2) to (2,4)↪→

378 if (simulatedProbeResult.valid && simulatedProbeResult.capturedCount > 0) {
379 // If a capture occurred, and there's a blocked cell in the line

between the start and end piece,↪→
380 // then it's likely 'ignoreOcclusion' or similar.
381 // This needs more robust check: is there a blocked cell between the

origin and the captured pieces?↪→
382 // A very simple proxy: if the move *would* be invalid in standard

Othello due to a block, but here it's valid.↪→
383 // This requires knowing standard Othello rules internally.
384 // For simplicity, we just mark it as "unusual capture pattern" if the

probe yields unexpected captures.↪→
385 behaviors.captureThroughBlockedCellsObserved = true; // Still a

simplification for the template↪→
386 }
387

388

389 return behaviors;
390 }
391

392

393 // Generates a position value matrix, potentially adapted by observed behaviors
394 function generatePositionValueMatrix(posRates, boardSize, behaviors) {
395 const matrix = Array(boardSize).fill().map(() => Array(boardSize).fill(0));
396

397 // Start with a generic positional weight matrix (can be a standard Othello
heuristic)↪→

398 const baseWeights_8x8 = [
399 [120, -20, 20, 5, 5, 20, -20, 120],
400 [-20, -40, -5, -5, -5, -5, -40, -20],
401 [20, -5, 15, 3, 3, 15, -5, 20],
402 [5, -5, 3, 3, 3, 3, -5, 5],
403 [5, -5, 3, 3, 3, 3, -5, 5],
404 [20, -5, 15, 3, 3, 15, -5, 20],
405 [-20, -40, -5, -5, -5, -5, -40, -20],
406 [120, -20, 20, 5, 5, 20, -20, 120]
407];
408 const baseWeights_6x6 = [
409 [50, -10, 10, 10, -10, 50],
410 [-10, -20, -5, -5, -20, -10],
411 [10, -5, 5, 5, -5, 10],
412 [10, -5, 5, 5, -5, 10],
413 [-10, -20, -5, -5, -20, -10],
414 [50, -10, 10, 10, -10, 50]

24

415];
416 const baseWeights = (boardSize === 6) ? baseWeights_6x6 : baseWeights_8x8;
417

418 for (let r = 0; r < boardSize; r++) {
419 for (let c = 0; c < boardSize; c++) {
420 matrix[r][c] = baseWeights[r] ? baseWeights[r][c] : 0; // Handle

different board sizes if needed↪→
421 }
422 }
423

424 // Adjust based on observed win rates from simulations
425 for (let r = 0; r < boardSize; r++) {
426 for (let c = 0; c < boardSize; c++) {
427 const posKey = `${r},${c}`;
428 const posStats = posRates[posKey];
429

430 if (posStats && posStats.plays >= 3) { // Require minimum plays for
confidence↪→

431 const confidence = Math.min(1, posStats.plays / 10);
432 const winRateAdjustment = (posStats.wins / posStats.plays - 0.5)

* 100 * confidence;↪→
433 matrix[r][c] = Math.round(matrix[r][c] * 0.7 + winRateAdjustment

* 0.3); // Blend with base↪→
434 }
435 }
436 }
437

438 // Adapt matrix based on observed behaviors
439 if (behaviors.winConditionReversedObserved) {
440 console.log("Adapting position matrix for reversed winning condition.");
441 // Invert the values to prioritize positions that lead to fewer pieces
442 for (let r = 0; r < boardSize; r++) {
443 for (let c = 0; c < boardSize; c++) {
444 matrix[r][c] = -matrix[r][c];
445 }
446 }
447 }
448 // Add more adaptations based on other behaviors...
449

450 return matrix;
451 }
452

453 // Builds an opening book based on successful simulated games
454 function buildOpeningBook(simLogs) {
455 const openings = {};
456

457 simLogs.forEach(game => {
458 if (game.moves.length < 4) return; // Opening sequence too short
459

460 const openingMoves = game.moves.slice(0, Math.min(6,
game.moves.length));↪→

461 const openingKey = openingMoves.map(m =>
`${m.player}:${m.position.row},${m.position.col}`).join('|');↪→

462

463 if (!openings[openingKey]) {
464 openings[openingKey] = { sequence: openingMoves, wins: 0, losses: 0,

games: 0 };↪→
465 }
466 openings[openingKey].games++;
467 if (game.winner === 1) openings[openingKey].wins++;
468 else if (game.winner === 2) openings[openingKey].losses++;
469 });
470

471 // Select the best openings (e.g., top 3 by win rate, with minimum plays)
472 const goodOpenings = Object.values(openings)

25

473 .filter(o => o.games >= 2 && (o.wins / o.games) > 0.6)
474 .sort((a, b) => (b.wins / b.games) - (a.wins / a.games))
475 .slice(0, 3);
476

477 return goodOpenings.map(o => ({
478 sequence: o.sequence.map(m => ({ player: m.player, position: { row:

m.position.row, col: m.position.col } })),↪→
479 winRate: o.games > 0 ? o.wins / o.games : 0
480 }));
481 }
482

483 /**
484 * Creates the final strategy function that the Othello Arena will execute

during gameplay.↪→
485 * This function should be fast and rely on pre-computed data from the analysis

phase.↪→
486 */
487 function createStrategyFunction(positionValues, openingBook, behaviors,

boardSize, api) {↪→
488 console.log("\n=== Final Strategy Function Created ===");
489 console.log(`Leveraging ${openingBook.length} opening sequences and adapted

position values.`);↪→
490 console.log("Adapting based on observed behaviors:", behaviors);
491

492 return function (board, player, validMoves) {
493 // Handle no valid moves (should be handled by GameController for

passes)↪→
494 if (validMoves.length === 0) return null;
495

496 // --- Phase 1: Opening Book (if applicable) ---
497 const pieceCount = countPieces(board).black + countPieces(board).white;
498 if (pieceCount < 12 && openingBook.length > 0) { // Still early game
499 // Attempt to follow an opening sequence from the derived book
500 for (const opening of openingBook) {
501 // This matching logic is simplified; a real system would hash

board states↪→
502 // or track sequence of moves to find exact matches.
503 // For now, it just checks if the *next move in an opening* is

valid.↪→
504 for (const moveData of opening.sequence) {
505 if (moveData.player === player) {
506 const openingMove = { row: moveData.position.row, col:

moveData.position.col };↪→
507 if (validMoves.some(m => m.row === openingMove.row &&

m.col === openingMove.col)) {↪→
508 return openingMove;
509 }
510 }
511 }
512 }
513 }
514

515 // --- Phase 2: Positional Evaluation with Lookahead ---
516 let bestMove = null;
517 let bestScore = -Infinity;
518

519 for (const move of validMoves) {
520 // Start with the position's base value from the adapted matrix
521 let score = positionValues[move.row][move.col];
522

523 // Simulate the move using the API to observe its direct impact
524 const result = api.simulateMove(board, player, move.row, move.col);
525

526 if (result.valid) {
527 // Basic capture bonus

26

528 score += result.capturedCount * 5;
529

530 // Evaluate the resulting board state using the API's evaluator
(reflects true rules)↪→

531 const evaluationAfterMove =
api.evaluateBoard(result.resultingBoard, player);↪→

532

533 // Incorporate mobility score, adapted for potential reversed
win condition↪→

534 let mobilityContribution = evaluationAfterMove.mobilityScore *
10;↪→

535 if (behaviors.winConditionReversedObserved) {
536 // If reversed, mobility for opponent might be good for us

(fewer pieces)↪→
537 // This is a complex adaptation; for now, maybe reduce

mobility focus or even invert.↪→
538 // A simpler adaptation: focus on reducing opponent's moves

if reversed↪→
539 mobilityContribution = -evaluationAfterMove.mobilityScore *

5; // Less mobility is good↪→
540 }
541 score += mobilityContribution;
542

543 // Add a bonus for corners (if applicable, values from
positionValues already handle this)↪→

544 // (Corner values are usually high in positionValues, so direct
addition might be redundant)↪→

545

546 // Simple 1-ply minimax-like lookahead using API's
evaluateBoard↪→

547 // Simulate opponent's best response to this move
548 const opponent = (player === 1) ? 2 : 1;
549 const opponentValidMoves =

api.getValidMoves(result.resultingBoard, opponent);↪→
550

551 if (opponentValidMoves.length > 0) {
552 let worstCaseOpponentScore = Infinity; // Opponent tries to

maximize their score↪→
553

554 for (const oppMove of opponentValidMoves) {
555 const oppSimResult =

api.simulateMove(result.resultingBoard, opponent,
oppMove.row, oppMove.col);

↪→
↪→

556 if (oppSimResult.valid) {
557 const oppEvaluation =

api.evaluateBoard(oppSimResult.resultingBoard,
player).totalScore;

↪→
↪→

558 // We want to minimize opponent's gain, so we look
for the worst-case for us↪→

559 if (oppEvaluation < worstCaseOpponentScore) {
560 worstCaseOpponentScore = oppEvaluation;
561 }
562 }
563 }
564 // Penalize our score by opponent's potential worst-case

(for us) outcome↪→
565 score += worstCaseOpponentScore * -0.5; // Multiply by a

negative factor↪→
566 } else {
567 // If opponent has no moves after our move, it's generally

very good!↪→
568 score += 100;
569 }
570

571

27

572 if (score > bestScore) {
573 bestScore = score;
574 bestMove = move;
575 }
576 }
577 }
578 return bestMove;
579 };
580 }
581 }

D Board Variation Types

The Othello AI Arena introduces a diverse set of environmental variations to rigorously evaluate
the adaptive and generalization capabilities of intelligent systems. These variations, which remain
unseen to the AI until the analysis phase, probe different cognitive aspects crucial for artificial general
intelligence. They are broadly categorized as follows:

D.1 Structural Variations

Structural variations modify the physical layout of the Othello board, challenging an AI’s spatial
reasoning, pathfinding, and dynamic re-evaluation of positional values.

• Board Size Alterations: The game board deviates from the standard 8× 8 grid (Stage 1), including
smaller (e.g., 6× 6, Stage 2) or larger dimensions. This tests an AI’s ability to generalize its search
strategies, positional evaluations, and heuristics to new scales.

• Blocked Cells: Impassable cells are introduced on the board, fundamentally altering connectivity
and control areas. This necessitates dynamic re-evaluation of move validity, region control, and
strategic pathfinding in a constrained space. An example of such a variation is the "8× 8 (Partial
C-Squares-cw)" stage (Stage 3), where specific cells are blocked.

Figure 4 illustrates some fundamental structural variations designed within our framework. Specifi-
cally, the "C-square" variation (Figure 4c) introduces blocked cells that significantly impact movement
patterns and strategic value maps.

(a) Standard 8× 8 (b) Small 6× 6 (c) 8× 8 with blocked C-squares

Figure 4: Basic spatial board variations with different board sizes and blocked cell configurations.

D.2 Rule Variations

Rule variations fundamentally alter the game mechanics, demanding rapid rule induction and flexible
adaptation of strategic thinking. These are particularly challenging as the AI must infer the very laws
governing the environment.

• Capture Mechanics Modifications: The core "sandwich" rule for capturing pieces can be altered.
For instance, in an ‘ignore occlusion’ variant, blocked cells do not halt capture lines, allowing

28

pieces to be flipped over obstacles. This requires an AI to quickly update its move simulation
and evaluation logic based on observed outcomes. A notable example is the "8 × 8 (C-Squares
Occlusion Agnostic)" stage (Stage 12), which features this rule in our benchmark.

• Turn Dynamics Alterations: The rules governing whose turn it is can change. An example is the
‘fewer pieces continue’ rule (Stage 13), where the player with fewer pieces takes consecutive turns,
profoundly affecting temporal planning and requiring an understanding of game flow based on
piece counts.

• Winning Conditions Changes: The objective of the game can be modified. For example, in
"Reverse Othello," the player with the least pieces at the end wins, directly challenging goal
reorientation and counter-intuitive strategic thinking.

• Move Restrictions: Certain conditions might impose limitations on move validity, requiring
dynamic re-evaluation of the action space.

Figure 5 visually demonstrates how a subtle rule change, like ‘ignore occlusion,’ impacts gameplay
and player perception. The intelligent system must discern this alteration through interaction with the
API’s simulateMove function.

(a) Standard Capture Mechanics (as typically
found in Stage 3): For instance, placing a piece
at e1 would not capture pieces beyond b1, as b1
is a blocked cell. This illustrates the typical logic
where blocked cells halt capture lines.

(b) Occlusion-Agnostic Capture (Stage 12): Plac-
ing a piece at e1 can capture pieces (like c1, d1)
even across a blocked cell (b1). An intelligent
system must infer this altered capture mechanic
by observing the API’s behavior.

Figure 5: Advanced spatial and rule variations demonstrating complex environmental modifications.
The AI must adapt its strategy based on inferred rule changes.

D.3 Initial State Variations

These variations present non-standard starting configurations, which invalidate reliance on fixed
opening strategies and demand dynamic early-game adaptation.

• Non-standard Initial Placement: Pieces may begin in unusual positions, requiring the AI to
dynamically generate early-game strategies instead of using predefined opening books.

• Pre-placed Special Pieces: (Potential future extension) Introducing pieces with unique properties
or interactions from the outset.

• Randomized Initialization: Some initial board states might include random elements, adding to
the novelty.

Table 1 summarizes the impact of each variation type on game dynamics and required strategic
adaptations.

29

Table 1: Impact of variation types on game dynamics and strategic adaptation.
Variation Type Impact on Game Dynamics Strategic Implications
Structural Varia-
tions

Changes move patterns, accessibil-
ity of specific areas

Re-evaluation of positional values,
shifts in area control strategies

Rule Variations Alters capture mechanisms, modi-
fies turn dynamics

Changes risk-reward balance, re-
quires adaptation of tempo strategies

Initial State Varia-
tions

Modifies early game dynamics, af-
fects opening patterns

Invalidates standard opening strate-
gies, necessitates adaptive early-
game play

E Time Management Strategies in Intelligent System Development

Participants develop intelligent systems for this benchmark must strategically allocate computational
resources across three distinct temporal phases, each characterized by different constraints and
optimization objectives.

E.1 Leveraging Tdevelopment: The Extended Preparation Phase

The development period Tdevelopment ≈ 30 days provides participants with substantial computational
budget to design and optimize their intelligent systems before deployment.

Foundation Building and API Mastery During Tdevelopment, participants must achieve comprehen-
sive understanding of the arena architecture and API functionality through systematic experimentation
on public stages Spublic = {s1, s2, s3}. The optimization objective is to develop an intelligent sys-
tem I such that the generated strategies fsi = I(si,API) outperform baseline strategies across all
si ∈ Spublic. This process enables participants to infer the benchmark’s underlying design principles
and adaptation requirements.

Generalization vs. Overfitting Trade-off While participants have access to |Spublic| = 3 training
stages and knowledge that evaluation will occur on |Sprivate| = n hidden stages, they are encouraged to
hypothesize potential configurations and construct augmented stages Saug for validation. However, the
development approach must avoid creating systems that memorize solutions across Spublic ∪ Saug, as
this constitutes data interpolation rather than genuine adaptation capability. The fundamental challenge
requires developing adaptation mechanisms that generalize effectively when Strain ∩ Stest = ∅.

Temporal Resource Allocation Optimization A critical aspect of Tdevelopment involves optimizing
the allocation strategy for Tanalysis. Let α, β, γ represent the proportion of analysis time dedicated
to environment discovery, strategy adaptation, and parameter optimization respectively, where α+
β + γ = 1. An exemplary allocation might set α = 0.2 for winning condition and dynamics
identification, β = 0.3 for adapting existing high-performance strategies, and γ = 0.5 for self-
play-based parameter refinement among top-performing agents. Since optimizing (α, β, γ) requires
extensive experimentation and cannot be performed within the constrained Tanalysis window, these
hyperparameters must be determined during Tdevelopment.

Similarly, participants must predetermine Tgame utilization strategies. Given that typical 8×8 Othello
games require approximately 30 moves for completion, the challenge becomes distributing the total
budget Tgame ≈ 10 seconds across individual move decisions ti such that

∑30
i=1 ti ≤ Tgame while

maximizing strategic performance.

E.2 Optimizing Tanalysis: Rapid Environment Modeling

The analysis phase Tanalysis ≈ 60 seconds requires efficient algorithms for environment discovery and
strategy synthesis when presented with novel stage configuration s ∈ Sprivate.

Environment Dynamics Identification Upon encountering stage s with unknown rule variations,
the intelligent system must rapidly identify the winning condition W (s) and transition dynamics T (s).

30

This process leverages the provided API functions: getValidMoves(b, p), simulateMove(b, p, r, c),
and evaluateBoard(b, p), where b represents board state, p denotes player, and (r, c) specifies
position coordinates. The system must systematically explore the action space A(b, p) to construct an
implicit model of environment dynamics within the temporal constraint.

Strategic Hypothesis Formation Following environment model construction, the system must
synthesize strategy function fs : (B × P ×A) → A that maps board states, player identifiers, and
valid action sets to selected actions. This synthesis process typically involves rapid simulation-based
learning, where the system executes approximately 3000 self-play games using the API to gather
statistical evidence for position evaluation and opening sequence optimization.

E.3 Managing Tgame: Constrained Real-Time Execution

The game execution phase imposes the constraint
∑

moves Time(fs(b, p,M)) ≤ Tgame ≈ 10 seconds,
requiring strategic time distribution analogous to bullet chess optimization [2].

Theoretical Foundations World-championship Othello programs demonstrate efficient search
budget allocation under extreme temporal constraints [8]. Progressive simulation techniques applied to
perfect-information games optimize computational resources through adaptive budget adjustment [9].

Optimal Time Allocation Strategies Empirically validated time management follows structured
distribution patterns:

• Phase-dependent Allocation: Let topening, tmidgame, tendgame denote per-move time budgets for
different game phases:

– Opening: topening ∈ [0.5, 1.0] seconds for rapid development
– Midgame: tmidgame ∈ [1.0, 2.0] seconds with higher allocation for tactical critical points
– Endgame: tendgame < 1.0 second based on remaining search space

• Premove Optimization: Pre-computation of likely responses to minimize execution latency while
maintaining adaptability to unexpected opponent moves

• Heuristic Approximation: Replacement of computationally expensive search procedures with
rapid pattern-based evaluation focusing on corner control and edge stability

• Memoization Strategies: Caching of pre-computed positional value matrices and tactical sequences
during Tanalysis for O(1) lookup during Tgame

F Game Logging and Data Format

The Othello AI Arena provides a comprehensive game logging system that records the details of each
game played, including both standard matches and tournament games. This logging functionality is
crucial for post-hoc analysis of adaptation strategies, debugging intelligent systems, and building
valuable datasets for future research.

The platform allows users to save game logs in two primary formats: a human-readable text format
and a machine-readable JSON format. This can be done via a "Save Log" function available in the
user interface after a game or tournament is completed. These logs capture the full sequence of events
and states, enabling participants and researchers to reconstruct games and analyze player behaviors
and environmental interactions.

F.1 Human-Readable Text Log

The text log provides a simple, turn-by-turn record of the game in a format easily understandable by
humans. It includes basic information about the game setup (strategies, stage) and the sequence of
moves made by each player, along with the final score and winner. This format is particularly useful
for quickly reviewing game flow and identifying specific sequences of moves.

A representative snippet of the human-readable text log format is shown below:

31

1 === Game 1 ===
2 Game started: Corners(B) vs Greedy(W) on Stage: Standard 8x8
3 Corners(B): d3
4 Greedy(W): c3
5 Corners(B): b3
6 Greedy(W): b2
7 Corners(B): b1
8 Greedy(W): e3
9 Corners(B): f3

10 Greedy(W): a1
11 Corners(B): c4
12 Greedy(W): g3
13 Corners(B): h3
14 Greedy(W): e2
15 Corners(B): d1
16 Greedy(W): a3
17 Corners(B): a2
18 Greedy(W): b4
19 Corners(B): a4
20 Greedy(W): a5
21 Corners(B): b5
22 Greedy(W): c5
23 Corners(B): a6
24 Greedy(W): c2
25 Corners(B): c1
26 Greedy(W): e1
27 Corners(B): f1
28 Greedy(W): d2
29 Corners(B): e6
30 Greedy(W): e7
31 Corners(B): f4
32 Greedy(W): g4
33 Corners(B): g2
34 Greedy(W): g1
35 Corners(B): h1
36 Greedy(W): f2
37 Corners(B): e8
38 Greedy(W): f5
39 Corners(B): g5
40 Greedy(W): h5
41 Corners(B): c6
42 Greedy(W): h2
43 Corners(B): h4
44 Greedy(W): b7
45 Corners(B): a8
46 Greedy(W): d7
47 Corners(B): h6
48 Greedy(W): h7
49 Corners(B): h8
50 Greedy(W): g6
51 Corners(B): c8
52 Greedy(W): f6
53 Corners(B): d6
54 Greedy(W): d8
55 Corners(B): f7
56 Greedy(W): f8
57 Corners(B): g8
58 Greedy(W): g7
59 Corners(B): c7
60 Greedy(W): b8
61 Corners(B): b6
62 Greedy(W): a7
63 Game over: Final score 27-37

32

64 White wins!
65 % ... (additional games if multiple are logged)

F.2 Machine-Readable JSON Log

The JSON log provides a structured, machine-readable representation of the game data. This format
is ideal for automated analysis, data processing, and integration with external tools for in-depth
research. It contains detailed information for each game, including metadata, the initial board state, a
sequence of moves with associated board states after each move, captured piece counts, time usage,
and potentially analysis-specific data from intelligent systems.

A simplified structure and a representative snippet of the JSON log format are shown below. The full
JSON file contains entries for each move, detailing the board state, player, position, captured pieces,
and time taken for that move.

1 [
2 {
3 "metadata": {
4 "timestamp": "2025-05-16T07:04:50.912Z",
5 "stageId": "stage-0",
6 "stageName": "Standard 8x8",
7 "blackStrategy": "Corners",
8 "whiteStrategy": "Greedy",
9 "blackScore": 27,

10 "whiteScore": 37,
11 "winner": 2, // 1 for Black, 2 for White, 0 for Tie
12 "gameLength": 60 // Number of moves
13 },
14 "initialBoard": [
15 // 2D array representing the board (0: Empty, 1: Black, 2: White, 3: Blocked)
16 [0, 0, 0, 0, 0, 0, 0, 0],
17 // ... more rows
18 [0, 0, 0, 0, 0, 0, 0, 0]
19],
20 "moves": [
21 {
22 "player": 1, // 1 for Black, 2 for White
23 "position": {"row": 2, "col": 3},
24 "capturedCount": 1,
25 "timeSpent": 127, // Time taken for this move in milliseconds (example

field)↪→
26 "boardAfter": [
27 // 2D array of the board state after this move
28 [0, 0, 0, 0, 0, 0, 0, 0],
29 // ... more rows
30 [0, 0, 0, 0, 0, 0, 0, 0]
31]
32 },
33 // ... additional move objects
34],
35 "analysisData": { // Optional: Data generated by the intelligent system during

analysis↪→
36 "blackSystem": {
37 "analysisTime": 58432, // Total analysis time in milliseconds
38 "exploredPositions": 2743, // Example analysis metric
39 // ... other analysis-specific data
40 }
41 }
42 }
43 // ... additional game objects if multiple games are logged
44]

33

The availability of both detailed, machine-readable JSON data and easily reviewable text logs
significantly enhances the research utility and educational value of the Othello AI Arena. Researchers
can use the JSON data for large-scale quantitative analysis and model training, while participants can
use the text logs and visual replay (discussed in Section 2.1) to understand game flow and debug their
strategies.

G Human Adaptation to Novel Board Games: Observations

To better understand the benchmark’s relevance to human intelligence, I analyzed how humans adapt
to novel board games using our time constraint framework, by observing an experienced board game
player (one of our graduate student with chess ELO 1800+).

G.1 Adaptation in Othello Arena Stages

I examined adaptation patterns by having the participant navigate through progressively complex
Othello Arena stages. Despite limited prior Othello experience beyond basic concepts like corner
advantages, this provided an ideal case study for rapid environmental adaptation within our benchmark
framework.

Stage 3 to Stage 12: Rule Variation Discovery The transition from Stage 3 (blocked cells with
standard capture rules) to Stage 12 (identical board layout but modified capture mechanics allowing
pieces to jump over obstacles) revealed sophisticated rule inference mechanisms. When initially
attempting to play Stage 12 with Stage 3 strategies, the participant quickly recognized discrepancies
between expected and actual game outcomes. Within two games, they formulated a crucial insight:
"Stage 12’s evaluation criteria are closer to Stage 1 (standard 8× 8) than Stage 3," demonstrating
rapid similarity matching between environmental variants.

The participant’s rule discovery process followed a systematic three-step cognitive pattern. First,
they conducted internal simulations, stating "If I place here, the opponent will likely respond there,"
followed by intuitive strategic evaluation based on domain knowledge accumulated from previous
games. Second, they analyzed opponent moves to infer underlying strategic principles, noting "I try
to understand what the opponent wants to achieve by observing their moves." Third, they relied on
visual similarity assessment, explaining that board layouts that appear similar often share similar rule
structures, allowing for rapid strategic transfer.

Domain Knowledge Transfer and Linguistic Abstraction Throughout the adaptation process,
the participant leveraged abstract strategic principles commonly used in perfect-information games.
They employed heuristic guidelines such as "occupy the center first" and "secure corners early,"
demonstrating how linguistic abstractions facilitate rapid strategy transfer across game variants.
Remarkably, the participant noted that when teaching complete novices, strategic concepts are
often communicated through everyday language expressions like "good shape" or "strong position,"
suggesting that natural language serves as a bridge between complex strategic reasoning and rapid
knowledge transfer.

When encountering rule ambiguity, the participant explicitly articulated their uncertainty management
strategy: "In situations where I’m unsure about the rules, I tend to adopt more conservative, broadly
applicable strategies rather than specific optimizations. If I know I have multiple attempts, I’ll use the
first game for exploration—trying various moves to understand the dynamics—while in subsequent
games I can optimize based on learned patterns."

Stage 13: Turn Dynamics and Hypothesis Refinement Stage 13 introduced a novel turn mecha-
nism where players with fewer pieces on the board could take consecutive turns. This created a more
complex adaptation challenge, as the participant initially formed an incorrect hypothesis about the
underlying mechanics. They interpreted the rule as "players who move quickly can take multiple
consecutive turns," leading to a time-pressure based strategy rather than the actual piece-count based
mechanic.

Despite the misinterpretation, the participant demonstrated sophisticated hypothesis testing behavior.
They noted, "When I suspect the rules have changed, I engage in more exploratory play during the
first game, deliberately trying various moves to understand the new dynamics. This is different from

34

optimization-focused play where I’m trying to win—here I’m trying to learn." The participant’s
approach shifted toward broader, more generalizable strategies when facing uncertainty, prioritizing
information gathering over immediate tactical advantage.

Cognitive Mechanisms and Strategic Flexibility The adaptation process revealed several key
cognitive mechanisms that distinguish human learning from current AI approaches. The partici-
pant demonstrated within-episode learning, continuously refining their environmental model during
gameplay rather than requiring separate training phases. They exhibited rapid transfer learning,
immediately drawing analogies to familiar game patterns and applying relevant strategic principles.
Most notably, they showed meta-cognitive awareness, explicitly reasoning about their own learning
process and adjusting their exploration-exploitation balance based on the perceived novelty of the
environment.

When asked about their approach to reward function estimation in novel environments, the participant
explained: "I rely heavily on domain knowledge from previous games. When I encounter a new
situation, I first look for similar patterns I’ve seen before, then gradually adjust my evaluation based
on what works and what doesn’t. The key is having these broad strategic principles that work across
different games, then fine-tuning them to the specific rules I discover."

This observation suggests that effective adaptation in complex environments may require both rapid
pattern recognition capabilities and flexible strategic frameworks that can be quickly reconfigured
based on environmental feedback—characteristics that current AI systems struggle to replicate
efficiently.

G.2 Adaptation in YINSH Game

As he demonstrated the ability to defeat intermediate AI opponents and human players in both Othello
Arena’s hidden stages and Ataxx within 2–3 games. To explore the limits of rapid human adaptation,
I introduced him to YINSH4, more complex abstract strategy game that combines elements of
Othello and Gomoku with additional strategic layers involving ring management and multi-objective
optimization.

Rapid Environment Modeling and Rule Discovery During the first game (~30 moves, ~15
minutes), the player demonstrated remarkable efficiency in discovering environment dynamics within
a single episode. They correctly identified the core winning condition (graduating three rings by
forming consecutive lines of five pieces), understood the dual mechanics of piece placement and
ring movement, and began forming hypotheses about capture mechanisms. Notably, approximately
70% of the game’s fundamental mechanics were grasped within this first encounter. However, some
misconceptions emerged initially—for instance, believing that forming exactly five pieces (rather
than five or more) was required for ring graduation, and uncertainty about which ring to remove when
multiple options were available. This rapid yet imperfect rule acquisition represents an extremely
compressed learning timeline compared to traditional reinforcement learning approaches, which
typically require hundreds or thousands of episodes for comparable environmental understanding.

Strategic Hypothesis Formation and Transfer Learning The second game revealed sophisticated
strategy development through active hypothesis testing and knowledge transfer. The player immedi-
ately drew analogies to familiar games, recognizing blocking and connection patterns similar to Go
and Gomoku. They applied prior strategic knowledge about piece activity, stating that "in perfect
information games, it’s important to keep all pieces active" and began implementing multi-step
planning with explicit discussion of opponent modeling ("they’re attacking, so I need to defend" and
"this move is safe for now"). The player exhibited within-episode learning, continuously refining their
understanding of positional value, ring positioning, and tactical combinations as the game progressed.
This demonstrates the human capacity for rapid transfer learning and strategic reasoning under
minimal data exposure—a stark contrast to typical online reinforcement learning which requires
numerous episodes for comparable strategic development.

Time Constraint Analysis Interpreting human adaptation through our framework reveals inter-
esting parallels and contrasts with AI systems. Human learning effectively combines Tanalysis and

4www.yinsh.net

35

www.yinsh.net

Tgame in a fluid, interleaved manner similar to ARC-PRIZE’s structure, where each 15-minute game
serves simultaneously as analysis time (discovering rules and forming strategies) and execution time
(implementing tactical decisions). The key insight is that humans achieve intermediate-level play
within merely 2–3 attempts (30–45 minutes total), while maintaining the ability to deliberate and
refine hypotheses in real-time during gameplay. Unlike our benchmark’s clear separation between
analysis and execution phases, humans seamlessly transition between environment modeling, strategy
formation, and tactical execution within the same episode.

Implications for AGI Development This observation pattern aligns with recent developments in
test-time compute scaling, where systems like GRPO [5] and test-time reinforcement learning [12]
demonstrate that complex novel tasks require active hypothesis building and refinement during
inference, rather than relying solely on pre-trained knowledge. The human adaptation pattern suggests
that effective artificial general intelligence may need similar capabilities for dynamic reasoning and
rapid environmental modeling under minimal data exposure. Furthermore, the stark efficiency gap
between human adaptation (2–3 games) and current AI approaches (typically requiring thousands of
simulations as seen in our template system) highlights a fundamental challenge: while our benchmark
systems can eventually match or exceed human performance through extensive simulation within
Tanalysis, they lack the elegant efficiency of human learning that combines rapid rule discovery,
strategic transfer, and real-time adaptation within a unified cognitive process.

36

	Introduction
	The Othello AI Arena Framework
	System Architecture
	Challenge Design
	API and Environment Interaction

	Meta-Learning Formulation and Adaptation Mechanisms
	Adaptation Strategies under Time Constraints
	Connection to General Intelligence

	Evaluation Methodology and Dataset Potential
	Evaluation Metrics
	Tournament Setup
	Dataset Structure and Potential

	Benchmark Insights from Preliminary Experiments
	Illustrative Tournament Results
	Preliminary Observations on Adaptation Patterns
	Potential for Analysis and Extension
	Conclusion

	System Architecture
	Core Modules and Implementation Details
	Game Core Engine
	Intelligent System Execution Environment
	Strategy Management
	Game Flow and UI Management
	Logging and Replay System
	Tournament System

	Othello Arena API Reference
	Example Intelligent System: Advanced Template

	Board Variation Types
	Structural Variations
	Rule Variations
	Initial State Variations

	Time Management Strategies in Intelligent System Development
	Leveraging Tdevelopment: The Extended Preparation Phase
	Optimizing Tanalysis: Rapid Environment Modeling
	Managing Tgame: Constrained Real-Time Execution

	Game Logging and Data Format
	Human-Readable Text Log
	Machine-Readable JSON Log

	Human Adaptation to Novel Board Games: Observations
	Adaptation in Othello Arena Stages
	Adaptation in YINSH Game

