

Let Trajectories Tell Your Intentions

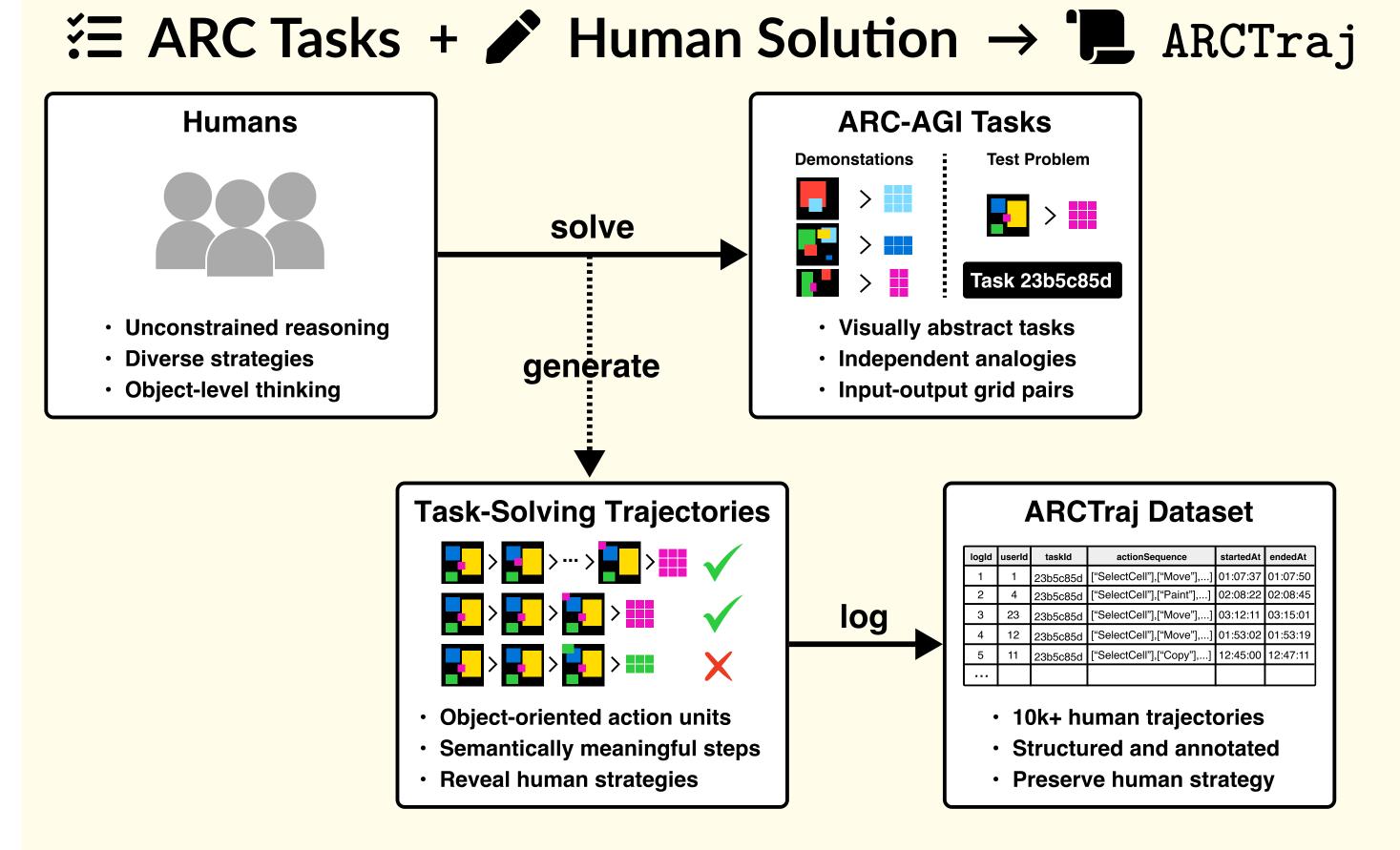
Inferring Human Intentions from Trajectories



Sejin Kim, Hosung Lee, Sundong Kim

TL;DR Human actions may deviate, but **intentions** can still be *inferred*.

ARCTraj: More Than Action Logs



 $\tau := (s_0, a_0, s_1, ..., a_{l-1}, s_l) \in ARCTraj$

- τ is a sequence of states and actions
- \bullet au is logged from humans solving ARC tasks
- ullet Rich supervision, but **intentions not explicit** in au

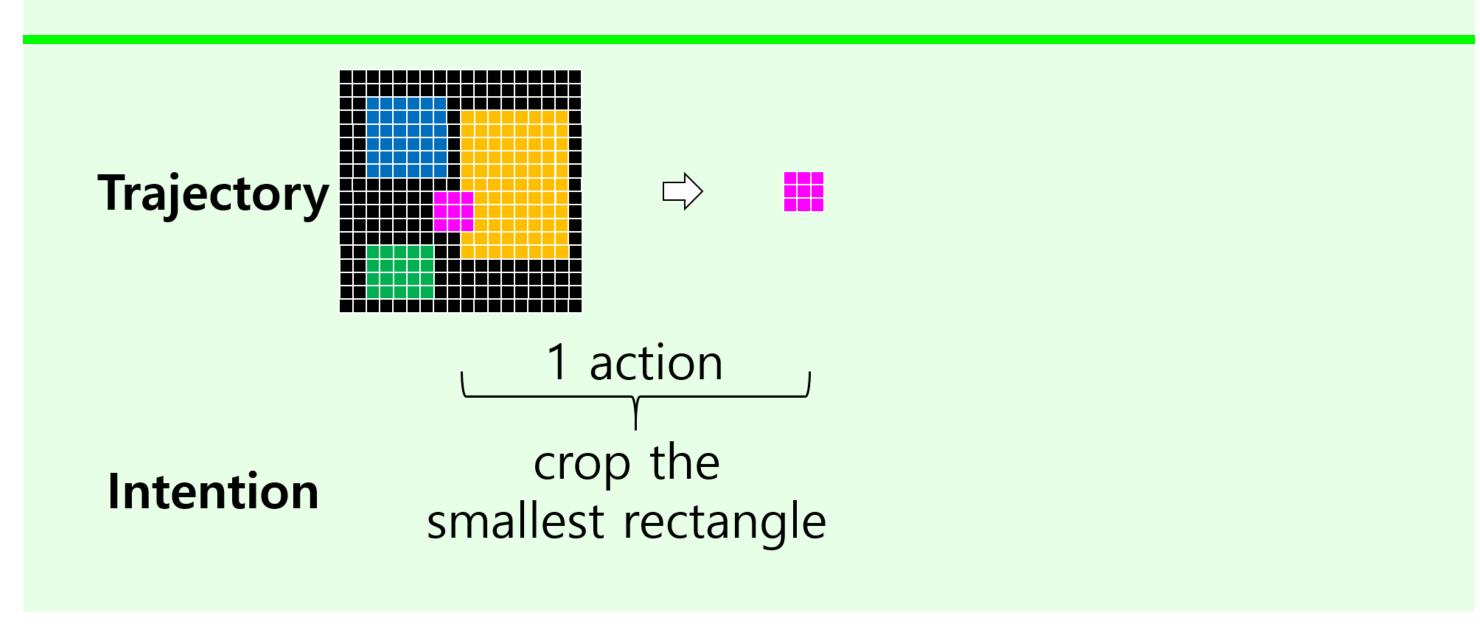
Why Intention Estimation Matter

- Inconsistent actions may reflect consistent goals
- Inferring intent patterns aids understanding

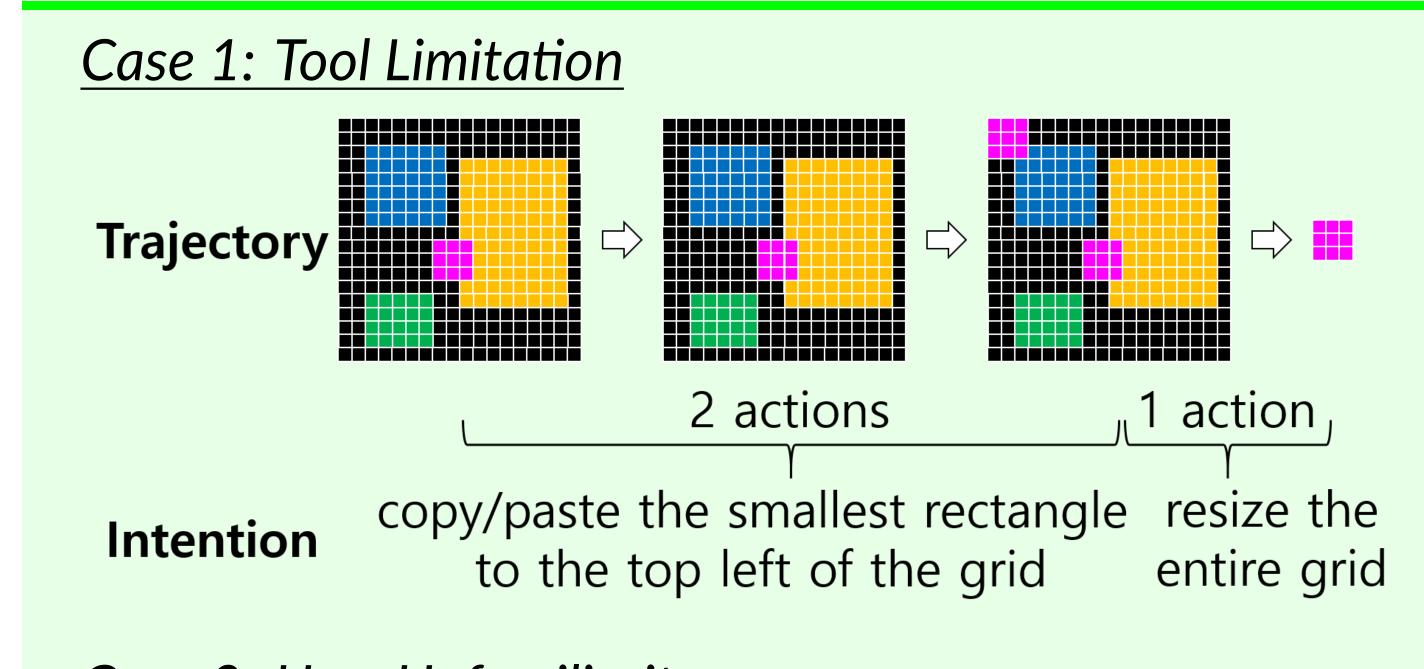
Observed Actions

User Intentions

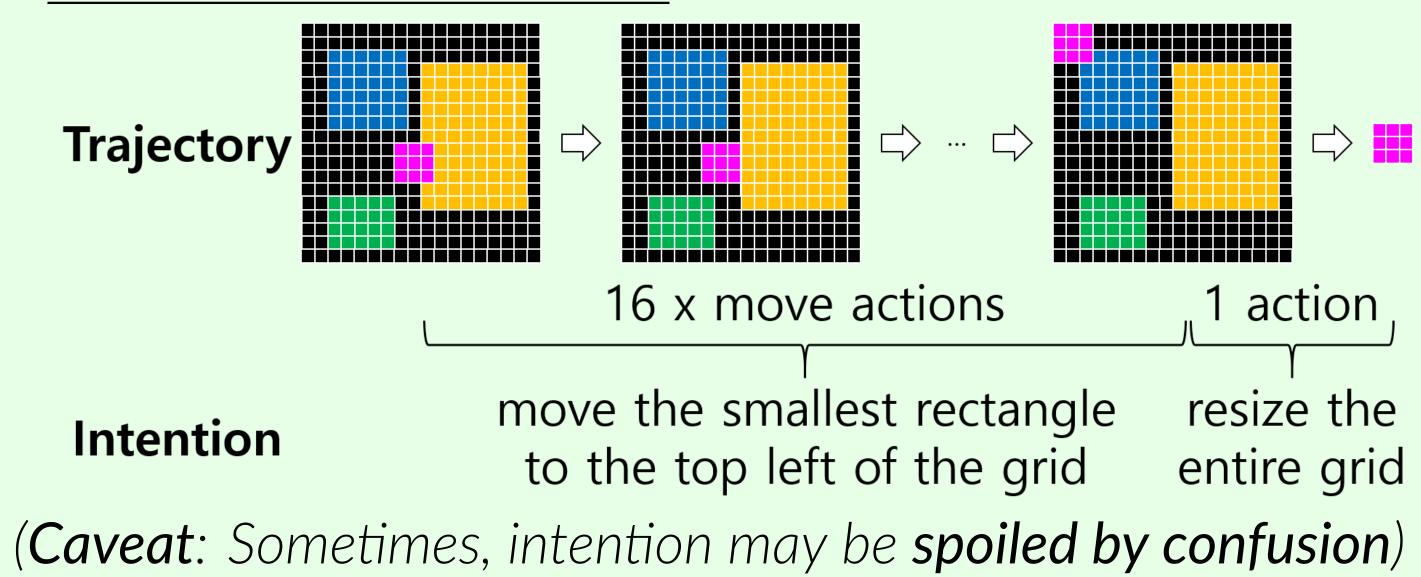
Intention = Action



$Intention \equiv Action \ Sequence$



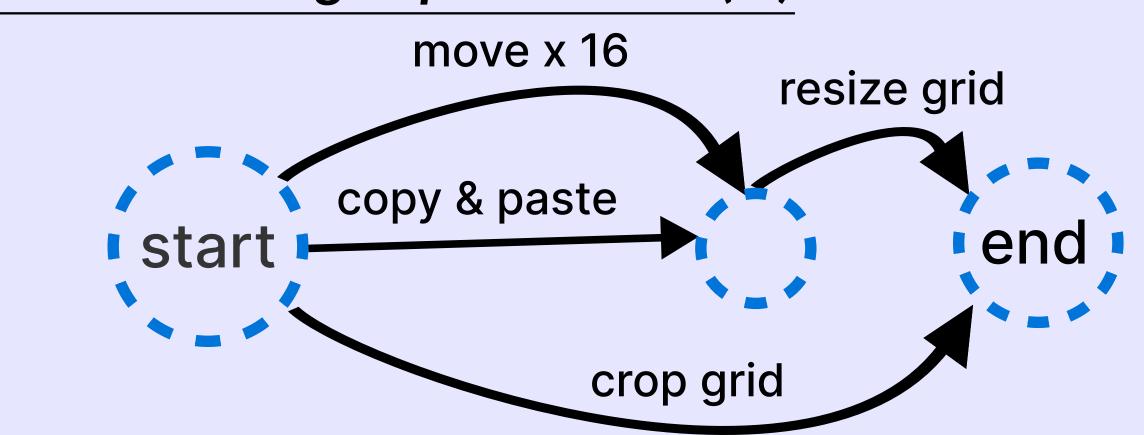
Case 2: User Unfamiliarity



Same Intention, Diverging Paths

$$au_i \neq au_j$$
, but possibly $extit{$\mathcal{I}(au_i) = \mathcal{I}(au_j)$}$ (An intention can be represented through various trajectories)

Inferring Intentions from ARCTraj



ullet ${\cal P}$ are extracted intra-task by frequency

Step 2: Segmenting Trajectories (τ)

$$au o au_1 \circ au_2 \circ \cdots \circ au_n$$
 where $au_{
m i} = (s_{
m i}^{
m in}, \ldots, s_{
m i}^{
m out}), \quad s_{
m i}^{
m in}, s_{
m i}^{
m out} \in \mathcal{P}$

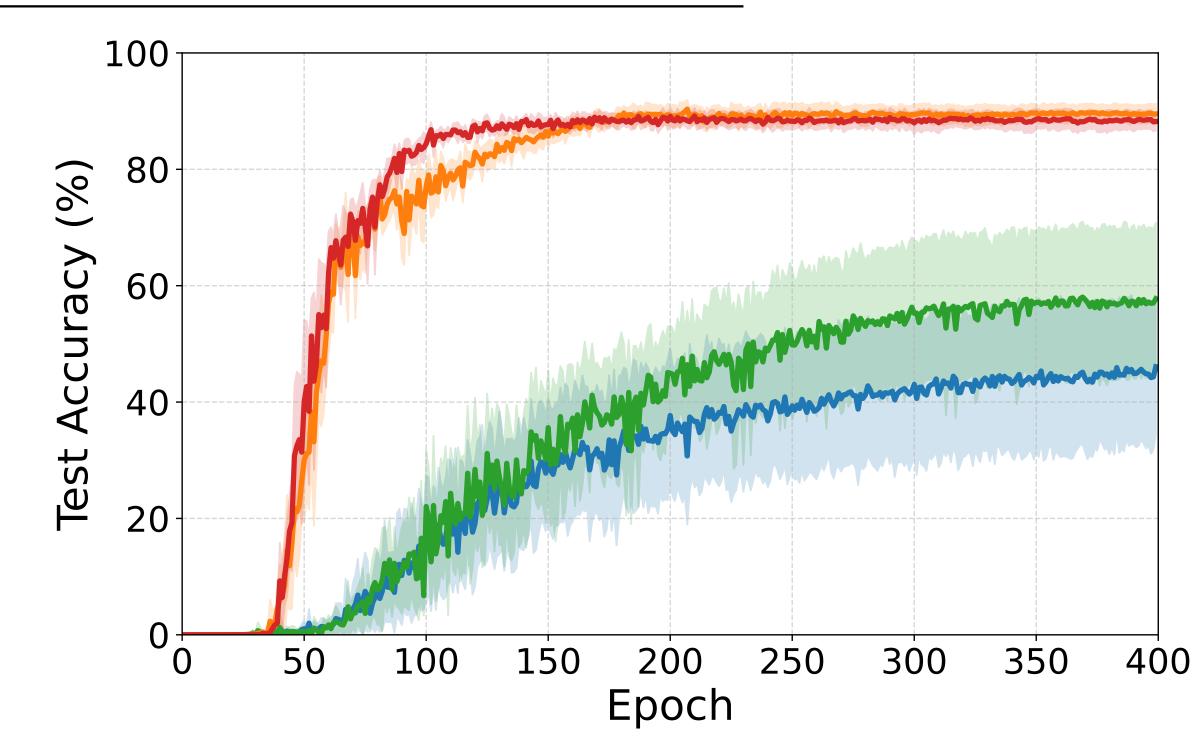
- Each τ is split into **segments** (τ_i)
- Splits occur at **popular state pairs** $(s_i^{\text{in}}, s_i^{\text{out}})$

Step 3: Representing Intention ($\mathcal{I}(\tau_i)$)

$$\mathcal{I}(au_{\mathsf{i}}) \coloneqq (s_{\mathsf{i}}^{\mathsf{in}}, s_{\mathsf{i}}^{\mathsf{out}})$$

• Segment is interpreted as a distinct intent transition

Effect of Intention-Guided Learning



- Faster convergence (>), Better accuracy (>)
- Human intent improves both efficiency & generalization