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Motivation

To address the lack of systematic reasoning with LLMs, the study adopts the

Language of Thought Hypothesis (LoTH) framework, which defines human rea-

soning through three fundamental capabilities:

Logical Coherence: Consistency in reasoning across related tasks.

Compositionality: Building complex solutions from simple components

Productivity: Producing infinite solutions from limited components.
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Logical Coherence: Consistency in Reasoning

Logical coherence in the context of this research refers to maintaining consis-

tency in reasoning across tasks, specifically through two dimensions:

Semantic Coherence: This evaluates how consistently LLMs solve

problems based on their reasoning processes and results. In this study, 83

out of 400 tasks were identified as correctly solved by LLMs, which were

then analyzed for logical consistency.

Inferential Coherence: This measures the ability of LLMs to apply logical

inferences consistently across similar tasks. Using additional examples

generated by a modified ARC benchmark (Re-ARC), the performance of

LLMs was tested for their inferential consistency.
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Compositionality: Building Through Components

Tests LLMs’ ability to combine simple DSL functions for ARC task solving

LLMs achieve 81% in single steps but only 3–14% in complex tasks

Task accuracy decreases with longer sequences due to cumulative errors
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Productivity: Efficiently Generating Valid Examples

Testing ability to generate new valid examples from observed patterns

Cost per valid example (GPT-3.5: $0.0275, GPT-4: $0.3925)

LLMs mimic patterns rather than understand rules, leading to invalid

generations (17.12% valid)
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Conclusion

Logical Coherence: Lack consistency across similar tasks

Compositionality: Fail in complex tasks (3-14%)

Productivity: Low valid generation rate (17.12%)


