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The existing methods for evaluating the inference abilities of Large Language Models (LLMs) have been
predominantly results-centric, making it challenging to assess the inference process comprehensively. We
introduce a novel approach using the Abstraction and Reasoning Corpus (ARC) benchmark to evaluate the
inference and contextual understanding abilities of LLMs in a process-centric manner, focusing on three key
components from the Language of Thought Hypothesis (LoTH): Logical Coherence, Compositionality, and
Productivity. Our carefully designed experiments reveal that while LLMs demonstrate some inference capabil-
ities, they still significantly lag behind human-level reasoning in these three aspects. The main contribution of
this paper lies in introducing the LoTH perspective, which provides a method for evaluating the reasoning
process that conventional results-oriented approaches fail to capture, thereby offering new insights into the

development of human-level reasoning in artificial intelligence systems.
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1 Introduction

Recent Large Language Models (LLMs) have demonstrated performance levels close to that of
humans, but experimental results showed that they lacked planning ability through thought or
reasoning [6]. Consequently, a key question in recent language model research is: Can LLMs think?
To address this question, new benchmarks for measuring reasoning abilities, such as MathVista [37],
Bongard-Logo [44], and Raven [75], have been proposed. Among these, the Abstraction and Reason-
ing Corpus (ARC) [8] emerged to be one of the representative benchmarks for assessing reasoning
abilities. As shown in Fig. 1 below, each task in ARC consists of 2—-5 demonstration example pairs
and a test example input grid. The goal is to infer rules from the given demonstration example
pairs and apply them to the test example. Input and output grid sizes can vary from a minimum of
1% 1 to a maximum of 30 X 30, with each grid having up to 10 different colors.
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Fig. 1. Three different ARC tasks. Each task involves demonstration examples of input and output grids that
exemplify the required transformation. Solvers must generate the correct output grid for the test example’s
input grid by applying the same transformation. ARC is a straightforward benchmark that can be solved
using only four types of prior knowledge: objectness, goal-directedness, arithmetic, and geometric topology.
Despite the small amount of prior knowledge required to solve the tasks, it presents a high level of reasoning
difficulty. These characteristics enable ARC to serve as a benchmark that fairly measures reasoning abilities.

The ARC remains an unsolved challenge despite its seemingly simple content and evaluation
methods. It demands a high level of abstraction and multiple reasoning steps, which explains why
conventional deep learning techniques have not achieved success. The best-performing models
to date have only achieved an accuracy of 40-55% [30], while LLMs (GPT-4, PaLM) have shown
an accuracy of around 10-20% [42]. Compared to the average human accuracy of 80% [27], these
results suggest significant differences in reasoning and abstraction capabilities between humans
and LLMs. However, in-depth research into how LLMs reason and how their reasoning differs from
human reasoning is lacking. This gap has led to calls for a shift from a results-focused evaluation
to a more nuanced analysis of the process [2, 7, 24, 72], indicating a need for a new perspective
that evaluates reasoning abilities based on the process rather than just the outcome.

To overcome the limitations of result-oriented analysis in artificial intelligence, this study adopts
an existing theory on what constitutes human reasoning ability. According to the Language of
Thought Hypothesis (LoTH) [17], human reasoning encompasses three essential characteristics:
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Logical Coherence, the ability to maintain consistency in reasoning; Compositionality, the
capability to construct complex ideas from simpler components; and Productivity, the capacity to
formulate an indefinite number of thoughts or solutions using a finite set of elements.
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Fig. 2. Three concepts of the Language of Thought Hypothesis (LoTH).

While attempts to evaluate logical coherence, compositionality, and productivity have existed
before [6, 58], there were limitations in that the definitions of each component varied across
papers and existing benchmarks showed insufficient performance in assessing each aspect. This
study differs from previous research in two key ways: 1) by redefining concepts borrowed from
psychology to fit into the field of computer science, and 2) by evaluating all elements through the
visual reasoning benchmark ARC. To achieve these goals, we have designed three experiments:

(1)

©)

Logical Coherence: LoTH identifies two types of coherence. These are Inferential Co-
herence - the ability to apply logical reasoning across related instances coherently — and
Semantic Coherence — the ability to maintain logical coherence in the reasoning process
and results [18]. To verify both types of logical coherence, we augmented each solved ARC
task with 100 similar test examples and evaluated the LLM’s performance on these related
instances. Additionally, we analyzed the solution processes, identifying cases where correct
answers were derived from flawed reasoning, to measure the LLM’s semantic coherence.
Compositionality: Compositionality refers to a system’s capacity to express one propo-
sition being inherently linked to its ability to express related propositions [18]. In this
study, we define compositionality as the ability to combine given semantics. Therefore, to
evaluate compositionality, it is necessary to verify whether semantics can be combined as
desired. Consequently, this study provided LLMs with step-by-step functions and examined
whether they could identify the appropriate functions to solve ARC problems. Subsequently,
we conducted an additional analysis to determine if the LLM could accurately predict the
results from the given step-by-step functions and to understand the reasons for the failure.
Productivity: Productivity refers to the ability to infinitely create unseen expressions by
combining a limited set of semantics [18]. However, it is difficult to quantitatively measure
whether one can make an infinite number of unseen expressions. Therefore, previous studies
have evaluated productivity by assessing whether rule-compliant unseen expressions can
be created [25, 31, 59]. Similarly, in this study, to evaluate the ability to generate unseen
expressions, we examined whether unseen ARC tasks that comply with the rules could be
generated when given a set of functions.
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As a result, we have confirmed that the current level of LLMs possesses a basic understanding of
images and is capable of simple types of compositional object manipulations. However, compared
to human reasoning abilities, LLMs lag in three areas: 1) They are not inferentially and semantically
coherent; 2) Their logical reasoning abilities, especially in a step-by-step manner, are weak; 3) They
struggle with understanding and generating unseen representations under complex constraints.

Finally, this study summarizes and presents recent trends proposed to address the weaknesses in
abstraction abilities and reasoning capabilities. Analyzing the reasoning abilities of LLMs according
to the components of human reasoning and discussing how to enhance each component represents
a differentiated approach from previous research. It offers a fresh perspective for measuring and
advancing the reasoning capabilities of LLMs in the future.

2 Preliminaries

This section aims to explain why we chose the LoTH perspective and ARC before starting a detailed
evaluation of LLMs’ reasoning capabilities. First, we will look at existing definitions of reasoning
abilities and show why LoTH is useful in the perspective of measuring intelligence in Section 2.1.
Then, in Section 2.2, we show that the ARC is an appropriate benchmark for studying LLMs from
the perspective of human reasoning, as it 1) utilizes abstract semantics that can be generalized, and
2) is easy to modify.

2.1 Limitation on Assessing Reasoning Ability of LLMs

Efforts to evaluate LLMs’ capabilities continue, highlighting their strengths in image and text gen-
eration. Especially, analyses confirm that LLMs possess elements of a World Model [22], indicating
potential in inference tasks. However, challenges in reasoning persist [58], with errors such as
distortion and incomplete reasoning being frequently observed [34]. Studies indicate that complex
compositionality remains a significant challenge [16].

The divergent claims about LLMs’ reasoning abilities stem from result-centric measurement
methods. Turing first shifted the approach toward a consequential direction [56], followed by others
who focused on performance measurement [40, 49, 67]. Recently, Chollet attempted to quantify
inference abilities from a consequential perspective [8]. However, these studies focus on what
reasoning can achieve without specifying its constituent elements. West et al. [66] raised concerns
about evaluating LLMs’ reasoning abilities solely from this perspective.

To address these limitations, we propose adopting LoTH perspective. LoTH enhances discussions
by integrating reasoning components with quantitative metrics, positing that inference involves the
manipulation of mental representations with compositional syntax and combinatorial semantics.
Our study evaluates LLMs’ inference capabilities through LoTH, focusing on logical coherence,
compositionality, and productivity.

Previous research has evaluated these aspects independently. Logical coherence refers to the
ability to construct coherent logic in problem-solving [76]. Compositionality involves understanding
and combining complex expressions [31]. Productivity is assessed by the accuracy and efficiency of
output generated from limited resources [25, 59]. However, these attempts lack unified criteria and
fail to provide a direct comparison to human reasoning processes.

Adopting the LoTH perspective offers strong justification for improving reasoning capabilities.
It helps develop the ability to process information and solve tasks in a manner similar to human
reasoning. Logical coherence ensures reasoning without contradictions, compositionality allows
the adaption of known knowledge to new scenarios, and productivity enhances the capacity to
generate results based on given rules. Thus, this approach aids LLMs in achieving more human-like
reasoning, enabling them to address complex problems with innovative and valid results.
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2.2 Advantages of using ARC as Reasoning Benchmark

The Abstraction and Reasoning Corpus (ARC) emerges as a compelling candidate for evaluating in-
ference abilities from the perspective of LoTH. ARC aligns with LoTH by requiring the combinations
of semantics to solve problems and allowing flexible task modifications.

2.2.1 Core Properties of ARC. ARC’s key characteristic is its requirement to extract and combine
compositional semantics, necessitating sophisticated problem-solving approaches. Two research
findings support this:

(1) Importance of Semantic Information: Studies show that supplementary semantic in-
formation significantly improves ARC task performance. For instance, integrating graph-
represented object information nearly doubled the success rate [71].

(2) High Abstraction Level of ARC: ARC’s abstraction level surpasses that of other bench-
marks [41]. Chollet argues that conventional feature extraction methods are insufficient for
ARG, given its demand for complex shape interpretation and transformation comprehen-
sion [8].

These observations highlight the need to develop approaches that can effectively extract and
utilize complex, abstract information for solving ARC tasks. Such properties fit with the perspective
of LoTH, which views reasoning ability as arising from a combination of semantics.

2.2.2  Flexibility in benchmark adaptation. Despite its simple rules, ARC remains challenging, with
LLMs achieving 15% accuracy [47], traditional program synthesis models reaching 26% [68], and the
human average accuracy at 80% [27]. Various ARC variants have emerged to address this challenge:

(1) 1D-ARC [71]: Reduces dimensionality from 2D to 1D, simplifying complexity while retain-
ing core knowledge. It effectively addresses object cohesion challenges, achieving high LLM
accuracy (approximately 90%).

(2) MC-LARC [51]: Adopts a multiple-choice format, transitioning from generative tasks to
selection tasks. GPT-4 demonstrated strong performance (approximately 75%).

(3) Mini-ARC [28]: Limits grid size to 5x5, simplifying input while retaining 2D generative
characteristics. Performance remains challenging, similar to the original ARC (approximately
15%).

(4) ConceptARC [43]: Organizes tasks into concept groups that focus on specific spatial
and semantic concepts. Performance remains challenging, similar to the original ARC
(approximately 20%).

These variations demonstrate ARC’s transformation flexibility and emphasize the necessity of
composition in solving ARC tasks. MC-LARC and 1D-ARC reduced reasoning step complexity,
while Mini-ARC focused on reducing image complexity. The performance differences among these
variants imply that reducing the need for complex transformation combinations can significantly
improve results, highlighting the importance of combinatorial syntax in solving ARC.

In summary, the ARC emerges as a compelling benchmark for evaluating inference abilities
through the lens of the LoTH. ARC’s core strength lies in its requirement to extract and combine
compositional semantics to solve tasks, as evidenced by improved performance with additional
semantic information. The various ARC variants demonstrate flexibility for different experimental
purposes, with their performance differences highlighting the necessity of combinatorial syntax in
solving ARC tasks. Furthermore, ARC’s high level of abstraction and reasoning complexity, shown
by the significant gap between human and Al performance, validates its use as an effective tool for
exploring inference abilities in the context of the LoTH.
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3 Evaluating the Inferential Capabilities of LLMs Using the ARC Benchmark

To evaluate whether LLMs possess inferential capabilities, one could compare these capabilities
to human reasoning. As explained in Section 2.1, according to LoTH, human reasoning can be
broadly categorized into three main components: Logical Coherence (Section 3.1), Compositionality
(Section 3.2), and Productivity (Section 3.3). We utilized ARC to examine each aspect of the LLMs’
reasoning capabilities from the perspective of LoTH.

3.1 Capability of LLMs 1: Logical Coherence

3.1.1 Motivation. Section 3.1 aims to evaluate the logical coherence of LLMs. This is a fundamental
aspect of LoTH, which considers coherence in two dimensions: inferential coherence and semantic
coherence [18]. Semantic Coherence refers to the ability to maintain logical coherence in the
process and results of reasoning. Inferential Coherence, on the other hand, is a system’s ability
to consistently apply a specific type of logical inference across all relevant instances, given it can
perform that inference in some cases. These concepts are crucial in human cognitive processes and
relevant to the rule inference required in ARC tasks.

Our initial experiments primarily focused on measuring semantic coherence by evaluating
whether the results produced by LLMs logically followed their problem-solving steps. This eval-
uation was conducted using various prompt techniques such as Chain of Thought (CoT) [65],
Least to Most (LtM) [78], and Tree of Thought (ToT) [74], similar to previous ARC solving at-
tempts [42, 71]. We compared the coherence levels these different prompting strategies achieved,
aiming to identify which techniques yielded the most semantically coherent results across diverse
problem-solving scenarios. However, recognizing the limitations of this approach in addressing
inferential coherence, we introduced supplementary experiments using augmented ARC tasks.
These tasks, created through the Re-ARC program [23], allowed us to assess how consistently
LLMs can apply logical patterns across variations of originally solved problems, providing a more
comprehensive evaluation of their logical reasoning capabilities.

Input Input Input
v N
] ]
v e
I;I I;I
] ]
v } N
Output Output Output
(a) Chain of Thought (CoT) (b) Least to Most (LtM) (c) Tree of Thoughts (ToT)

Fig. 3. Three prompting techniques in the experiment about logical coherence: (a) CoT, (b) LtM, and (c) ToT.

3.1.2  Comparison Across Prompting Techniques. The perceived deficiency in LLMs’ logical reason-
ing has been a recurrent critique, with direct attempts to solve ARC tasks yielding success rates
below 10% [42]. To address this issue, enhancements in LLMs’ logical reasoning are being pursued
through prompting techniques such as CoT, LtM, and ToT. These strategies have been shown to
effectively leverage LLMs’ reasoning capabilities [61] and offer the advantage of providing a more
transparent analysis for humans, as they involve a step-by-step reasoning process. Therefore, in
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this experiment, we assess the impact of these prompting strategies on LLMs’ logical coherence by
solving ARC tasks.

We applied three major prompting techniques — CoT, LtM, and ToT - to solve 100 ARC evaluation
tasks using the GPT-4-32k model. Each technique was tested across five iterations. ARC tasks
follow a few-shot learning paradigm, requiring the model to infer task rules from given example
pairs and apply them to test examples. The CoT method enhances reasoning performance by
generating answers through a structured chain of thought, which systematically connects steps
required for solving ARC tasks and provides examples in the prompt. Similar contextual information
was provided for LtM and ToT. LtM decomposes tasks into manageable steps and executes them
sequentially, while ToT generates multiple candidates at each step post-decomposition, selecting
the best candidate through a voting mechanism before proceeding to the next step.

Table 1. Averaged performance of each prompting technique. The accuracy is based on solving 100 random
ARC tasks with CoT, LtM, and ToT prompts, each repeated five times. The accuracy outside the parentheses
refers to the accuracy when only the results are correct, while the accuracy inside the parentheses indicates
the accuracy when both the results and the process are correct.

Iteration CoT LtM ToT
1 11% (3%) 6% (4%) 7% (3%)
2 10% (2%) 7% (4%) 4% (1%)
3 10% (5%) 6% (3%) 7% (2%)
4 10% (4%) 4% (2%) 7% (4%)
5 10% (6%) 5% (2%) 6% (2%)
(

Average 10.2% (4.0%) 5.6% (3.0%) 6.2% (2.4%)

Comparing ARC accuracy across prompts, CoT outperformed LtM and ToT in accuracy. Table 1
presents the results of applying LtM, CoT, and ToT to 100 randomly selected tasks from the
ARC evaluation set. The experiment was repeated five times, with the percentage of correct
answers included for each iteration. CoT achieved approximately 10% accuracy, while LtM and ToT
showed about 6% accuracy. CoT demonstrates superior performance, while ToT and LtM suffer
from cumulative error propagation, where small mistakes in one step of their multi-step answer
generation process can lead to compounded errors in subsequent steps. Given CoT’s accuracy
(~11%) compared to LtM and ToT (~7%) and its resilience to error propagation, we exclusively used
the CoT prompt in subsequent experiments.

However, when we checked the correctness of the solution process, all three prompting techniques
showed low accuracy, with no significant difference at around 3%, as indicated in parentheses. These
results demonstrate that while accuracy may differ depending on the prompting technique, there is
little variation in semantic coherence. This consistency across prompting methods suggests that
the issue lies not in the method of eliciting responses but in the fundamental reasoning capabilities
of LLMs. It is also important to note that both the results and processes fall far short of the average
human accuracy of 80%. These low performance metrics, particularly when compared to human
benchmarks, cannot be attributed to the limitations of specific prompting techniques. These findings
suggest that LLMs lag behind humans in terms of logical coherence. To analyze the specific reasons
for this, we conducted follow-up experiments. Section 3.1.3 analyzes inferential coherence, one
aspect of logical coherence, while Section 3.1.4 examines the semantic coherence of LLMs through
case studies.
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Sample Task

Grid Visualization

If the input grids are: then the correct output grids are:
[[o, 3,0, 0,0, 0], [[0, 0,0, 0, 3, 0],
[0,3,0,2,0,0], [0,0,0,0,3,2],
[0,0,0,2,0,0I, [0,0,0,0,0, 2],
[0,8,0,0,2,2], [0,0,0,8,2,2],
[0,0,0,0,2,2], [0,0,0,0,2,2],
[6,6,6,0,0,0I] [0,0,0,6,86,6]]

{additional examples}

To solve this task, follow the sub-tasks below.

1. Identify objects in the input grid.

2. Try to move each object to the right.

3. Stop when objects touch the right corner or other objects.

Following these steps will lead to the output grid.

Decomposing

If the input grids are: then the correct output grids are:
[[0,0,0,0,0, 0], [[0, 0,0,0,0, 0], ENEEE lrlll
[0,0, 3, 0, 0, 0], [0,0,3, 0,0, 0], HE EER
[0, 3,0, 3,0, 0], [0, 3, 4,3,0,0l, [ | ]
[0,0,3,0,3,0], [0,0,3,4,3,0], [ | ||
[0,0,0,3,0,0], [0,0,0,3,0,0], [ | N
[0,0,0,0,0,0I] [0,0,0,0,0,0]]

{additional examples}
To solve this task, decompose the task into sub-tasks like below.

1. Identify the places surrounded by “3"s in the input grid.
2. Fill in the places you found with “4".

Following these steps will lead to the output grid.

Target Task

If the input grids are: then the correct output grids are:
[[0,0,0,0,0,0,0], [[0,0,0,0,0,0,0],
[0,5,8,5,0,0,0l, [0,8,5,8,0,0, 0,
[0,5,8,5,0,0,0l, [0,8,5,8,0,0,0],
[0,8,8,8,0,0,0], [0,5,5,5,0,0,0l,
[0,0,0,0,0,0,0], [0,0,0,0,0,0,0],
[0,0,0,0,0,0,0], [0,0,0,0,0,0,0],
[0,0,0,0,0,0,0]l [0,0,0,0,0,0,0ll

{additional examples}
If the input grid are:

[[0,0,0,0,0,0,0,0,0],

[0,3,2,2,0,0,0,0,0],

[0,3,3,20,0,0,0,0], What is the correct output grid?
[0,3,2,2,0,0,0,0,0],

[0,0,0,0,0,86,6,6,0],

[0,0,0,0,0,1,1,1,0],

[0,0,0,0,0,1,86,86,0]

Fig. 4. Three types of prompts are shown on the left. Although all prompts are described as a 2D array of
grids, we visualized them on the right for clarity. By default, all three techniques use prompts with two main
components: a sample task and a target task. However, LtM and ToT use a different combination of the target

task and its decomposition command. This difference arises because CoT strictly follows the given sub-task,
while LtM and ToT decompose the task on their own.
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ToT

Target Task
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Decomposing Results

To solve this task,
the following steps
must be undertaken:

Sub-task 1:
Identify the color
composing each
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Sub-task 2:
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of the objects as

grids would be : 2 identified in
in Sub-task 1. Sub-task 1.
[[0,0,0,0,0,0,0,0,0], v | |
[0,2,3,3,0,0,0,0,0], v
[0,2,2,3,0,0,0,0,0],
[0,2,3,3,0,0,0,0,0],
[0,0,0,0,0,1, 1, 1,01, Sample Task Sample Task
[0,0,0,0,0,6,6,6,0], Sub-task 1 Sub-task 1
[0,0,0,0,0,6,1, 1,0] Target Task Target Task
v v
n |
v v v

Selected

Completion 1 Completion 1

Completion1 Completion1

f [ — |
Sub-task 1 Sub-task 1
Sample Task Sample Task
Completion 1 Completion 1
Target Task Target Task
Sub-task 2 Sub-task 2
v v
‘v |
v v v
Selected

Completion 2 Completion 2 Completion 2

Completion 2

Fig. 5. Grey blocks illustrate prompt sets delivered to the LLM, including the sample task, target task, and
LLM’s prior responses, as shown in Fig. 4. Green blocks denote the final answer. CoT relies on a single grey
block, indicating that the LLM strictly follows the provided sub-tasks. Conversely, LtM and ToT prompt
the LLM to generate and address sub-tasks sequentially, represented by decomposed results (red) and
intermediate responses (blue). ToT further distinguishes itself from LtM by evaluating multiple suggestions
for sub-task handling and selecting the most effective one through a voting mechanism.
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3.1.3 Inferential Coherence of LLMs. In our second experiment, we tested the inferential coherence
of LLMs, which measures their ability to maintain the same logical inference across tasks sharing an
underlying analogical rule. To assess this, we examined whether the LLM could solve new problems
defined by the same rules as previously solved ARC tasks.

Correctly Solved Task Augmented Test Examples
[ |
- | ” Task
| H Example
- i n i v
RN NG
<>
-~ Hln . =
Augmentation . Solve
Program . Aumented Tasks

|
- n =
[

Fig. 6. Inferential coherence testing via augmentation: Using the Re-ARC augmentation program [23], we
generated 100 new test examples per task. These examples retained the original analogical rule, allowing us
to evaluate LLMs’ inferential coherence across varied instances.

Algorithm 1 Calculating Inferential Coherence

Input: Training Tasks 7, LLM Model L(), Re-ARC Program R(), CoT Prompt P()
Output: Inferential Coherence of LLM C

/* Step 1: Identify Solved Tasks TS %/
TS5 — 0 // TS is a set of solved tasks by LLM
forT; € 7 do
for j «— 1to5do
if L(P(T;)) == True then
L TS — 75 U{T;} // Consider T; is solved if LLM solves in 5 tries
break

/* Step 2: Augment Solved Tasks TA %/

TA— 0 // T4 is a set of ‘71'.A generated below
for Tis €75 do
7lTA —0 // 7ITA is a set of augmented tasks from Tis
for j « 1to 100 do
| 74— TAU{R(TY)} // Augment TS using Re-ARC

TA—TAUTA

/* Step 3: Calculate Inferential Coherence C */

C « [Cl,Cz,...,ClTAl] // C is a list of the number of solved tasks in 7ITA
for 717A e 74 do
Cj < 0

for Tl“} € ‘717A do
if L(P(TI.A})) == True then
L cie—ci+1 // Count solved Tl“} in TiA

return C
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Fig. 6 summarizes the experiment, and the detailed procedure is in Algorithm 1. We began
by using GPT-40 to solve examples from 400 ARC tasks,! repeating this five times to identify
consistently solvable tasks. For tasks solved correctly at least once, we used Re-ARC [23] to
generate 100 additional examples that mirror the original approach. We hypothesized that a model
demonstrating inferential coherence would solve all augmented examples, allowing us to rigorously
test its generalization ability across similar tasks.

Fig. 7 presents two key analyses of the results. The cumulative distribution (Fig. 7a) shows
consistent exponential decay patterns across all five iterations, indicating persistent low coherence
regardless of iteration. The accuracy distribution (Fig. 7b) reveals that 57.8% of tasks achieved
below 10% accuracy on augmented examples. Together, these results demonstrate LLMs’ limited
inferential coherence on ARC tasks.
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(a) Cumulative distributions of successful solutions  (b) Distribution of ARC tasks by accuracy intervals
across 100 augmented examples per task. The y-axis  of 0.1 on augmented examples. The y-axis shows the
shows the cumulative proportion of tasks achieving  proportion of tasks per accuracy interval, averaged
each success rate. The consistent exponential decay  over five iterations. More than half (57.8%) of tasks
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Fig. 7. Analysis of GPT-40’s performance on augmented test examples. For each of the 83 tasks successfully
solved from the ARC training set, we generated 100 additional examples per task using Re-ARC [23] to
evaluate inferential coherence.

3.1.4 Case Study: Semantic Coherence of LLMs. Finally, we analyzed how LLMs solved tasks in
the two experiments described in Section 3.1.2 and Section 3.1.3. When evaluating not only the
answers but also the process for the three prompts CoT, LtM, and ToT, we found that regardless of
the prompt, the accuracy was about 3%, indicating that correct answers were being derived from
incorrect processes, as shown in Fig. 8.

To solve the task, 1) identify 5 X 5 objects within the input grid, 2) count the number of black
squares in each object, and 3) extract the object with the highest number of black squares. However,
CoT, LtM, and ToT attempted to solve the task incorrectly. For CoT, objects in the input grid were
sorted, and then the object in the middle was selected. Although CoT arrived at the correct answer,
the method of sorting the objects lacked clarity. For LtM and ToT, there was an understanding that
a specific object from the input grid needed to be selected to solve the task, but they mistakenly

1We selected 400 tasks from the ARC training set, as Re-ARC can only augment the training set
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recognized objects from the test input grid. These solutions share a common flaw: they fail to
establish a logically consistent rule across the different examples of training inputs and outputs
provided. In other words, regardless of the prompting technique (CoT, LtM, or ToT), LLMs still
struggle to demonstrate logical coherence in deriving a single rule that consistently applies across
the examples given to solve the task.

Task Reasoning Process of LLM

Correct

EE:

i

Demonstration E m =
Examples E

Incorrect 1

Test Incorrect 2

Example

Incorrectly recognize objects and select one arbitrarily

Fig. 8. Presenting instances where LLMs reach the correct answer but use flawed reasoning, highlighting
the challenge of applying consistent logical rules across different ARC tasks. The task involves identifying a
unique 5 X 5 object within a grid based on the number of black squares. The ‘Correct’ process shows the LLM
correctly identifying the unique object, while ‘Incorrect 1" and ‘Incorrect 2’ represent failed reasoning—one
due to arbitrary selection and the other due to misidentification.

The inconsistency of inferring correct results from incorrect processes was also observed in the
second experiment conducted on the training set. Upon analyzing the natural language explanations
for the 83 tasks solved at least once out of 400 training tasks, we found that in 35 of these cases,
the solutions proposed by the LLM could not produce the correct answer. This finding suggests
that LLMs lack semantic coherence regardless of the prompting technique or tasks. In other words,
LLMs derive outcomes unrelated to their reasoning process, as evidenced by generating correct
answers from incorrect solutions.

Tasks LLMs Solved Well
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Fig. 9. Types of tasks where the LLM showed high accuracy. The LLM showed high accuracy in simple tasks
such as pattern mirroring, pattern repetition, color mapping, and partial grid copying.

Nevertheless, in Section 3.1.3, we identified eight tasks that the LLM could solve with an accuracy
of 0.6 or higher. As shown in Fig. 9, these eight tasks consist of simple solutions such as mirroring,
color mapping, and partial grid copying. These tasks shared a common characteristic of conceptual
simplicity, utilizing only one of the four prior knowledge domains included in ARC: objectness,
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goal-directedness, numbers and counting, and basic geometry [8]. For the 17 tasks that required
the use of two or more prior knowledge domains, the LLM failed to solve any of the 100 augmented
examples. The fact that the LLM could not solve any of the augmented examples, despite having
solved the original ones, suggests that LLMs are not semantically coherent and may even indicate
potential data leakage.

This comprehensive analysis demonstrates that while LLMs can solve certain simple pattern
recognition tasks, they struggle with more complex reasoning that requires the integration of multi-
ple concepts. The inability to coherently apply rules across augmented test examples, coupled with
the generation of correct answers through incorrect reasoning, highlights significant limitations
in both the inferential and semantic coherence of current LLM systems when tackling abstract
reasoning tasks like those presented in ARC.

3.1.5 Conclusion. In Section 3.1, we evaluated the logical coherence of LLMs by solving 100 ARC
tasks using three different prompting techniques. Our results, showing accuracies ranging from 4%
to 12%, demonstrate variability in reasoning performance depending on the prompting approach.
Additionally, when experimenting with GPT-40 on 400 training tasks, the LLM showed a high
accuracy of 20%.

However, through an in-depth qualitative review, we demonstrated that the LLM’s results may
not be logically coherent. For the augmented test examples (100 for each solved task), the LLM only
managed to achieve performance above 60% in eight out of the 83 solved tasks. Furthermore, for 35
out of the 83 solved tasks, nearly half of the solution processes provided by the LLM were incorrect
and could not derive the correct results. This analysis suggests that the LLM has failed to achieve
human-level logical coherence.

The results of this study align with previous research asserting that logical problem-solving
remains challenging for LLMs alone. One study [60] found that LLMs can generate logically
consistent reasoning with CoT prompting, even when their reasoning steps are flawed. Another
study [77] showed that LLMs struggle with accurate self-reflection in tasks like mathematical
reasoning and translation. Additionally, research [57] revealed that LLMs often fail to detect errors
in intermediate steps, exposing flaws in their reasoning process. While these studies suggest that
providing more context or enforcing stronger self-reflection might improve logical reasoning [60,
65, 77], our findings indicate that these challenges persist, suggesting the issue may not be simply
a lack of information about the problem.

3.2 Capability of LLMs 2: Compositionality

3.2.1 Motivation. In Section 3.2, we investigate compositionality, the second concept of LoTH.?
Compositionality refers to the ability to generate complex linguistic expressions given simpler
ones [18]. This characteristic allows individuals to effectively tackle more complex tasks by breaking
sub-tasks down into simpler steps, supporting the notion that humans can solve more complex
tasks when faced with them. Strong compositionality enables the resolution of complex tasks and
facilitates transparent descriptions of the process, which is also an important aspect of LLMs.
This section uses ARC to test the compositionality of LLMs. Previous studies have tested a
model’s compositionality by providing functions in the prompt that can be combined to solve
tasks and then checking if the model can solve them [53]. Similarly, in this study, we also provide
step-by-step functions, which we refer to as DSL (Domain Specific Language), and then conduct
experiments to verify whether they can solve ARC tasks. Additionally, to understand why tasks
might not be solved, we conducted further experiments on the model’s comprehension of these

2While the Language of Thought Hypothesis principally uses the term ‘systematicity’, this study employs ‘compositionality’
as used in Fodor’s paper. We use this term because compositionality encompasses a broader concept than systemicity.
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functions. Therefore, we verify whether LLMs understand the meaning of the functions provided for
ARC tasks and whether they can combine the functions appropriately to produce the desired results.
The result of this experiment indicates that while LLMs sufficiently understand the functions and
their relationship with images, their ability to decompose and combine functions to achieve the
desired outcome is weak.

Task Experiment Condition DSL Selection Execution & Evaluation
w/o answer Available Rotate  Color
DSLs EEEEE EEEN
LT
M- & - ol el el
\Rotate

w/ answer Color Move Color
EN EEEN @ %:Move - : . III!
> I -» >
EREl e oS "l

w/o or w/ Human description

To make the output, you have to examine the green pattern in the input.
Identify any empty areas of blocks enclosed by the pattern and fill with yellow.

Fig. 10. Overall process of DSL compositionality experiments. Before conducting the experiment, decisions
are made on whether to provide 1) the test output and 2) a human description. During execution, the LLM
analyzes the given demo examples to infer the rules and then selects the appropriate DSL steps from the DSL
list to solve the test example. The chosen DSL steps are then applied to the test input grid within the DSL
environment, which determines whether the answer is correct.

3.2.2 Compositionality of LLMs. In the first experiment, to measure compositionality, we provided
LLM with information about DSL and asked them to solve given ARC tasks. Fig. 10 illustrates the
structure of the entire experiment. If an LLM possesses sufficient compositionality, it should be able
to select appropriate DSLs and their arguments for a given goal. However, in cases where the LLM
failed to choose the correct DSL, we divided the conditions further to identify the cause. These
conditions were whether the LLM understood the goal and the solution process. To analyze the
results according to each condition, four types of experiments were conducted: 1) given only DSL,
2) given correct output along with DSL, 3) given human descriptions [51] to ARC test examples
along with DSL, and 4) given both correct output grid and human descriptions along with DSL.
Providing the correct output grid demonstrates compositionality based on knowing or not knowing
the goal, while providing human descriptions shows the impact of natural language descriptions
on compositionality.

We provided each DSL as a Python function. In this experiment, we used 19 types of DSL
capable of solving ARC tasks. The prompts commonly included a brief explanation of ARC, DSL
function code with comments, DSL usage examples, demonstration examples of tasks, inputs for
the test examples, and object information of the test inputs. Object information is one of the crucial
parameters in solving ARC tasks, which is why we added it to the prompt. We used the PnP
algorithm [46] to extract object information from ARC tasks. The LLM returned a JSON-formatted
string representing the chosen DSL and arguments at each step, which was used to verify whether
the LLM reached the correct test output with an appropriate combination of DSL and arguments.
We used the most recent model, GPT-4o, for this experiment.
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Fig. 11. Performance measurement tool for human participants: The interface consists of five numbered
sections: 1) Demonstration examples from the given ARC task; 2) Test input grid for the given task; 3) Current
grid for participants’ responses; 4) Available DSLs; and 5) Object information automatically extracted using
the PnP method. Participants must utilize the provided DSLs and object information to construct appropriate
solutions, with both grid pixels and objects available as function parameters. Participants are meant to click
complete if the current grid seems to be the solution.

Lastly, to establish a baseline, we conducted human experiments. We developed a specialized tool
(Fig. 11) that provides the same information available to LLMs: ARC task demonstration examples,
initial test input, current grid state, DSL functions, and object information extracted through PnP.
Seven participants were constrained to solve the tasks using only the same DSLs given to the LLMs.
Through these experiments, we identified that among the 800 publicly available ARC tasks, 158
tasks were solvable within 10 DSL steps using the given operations. Subsequently, all experiments
in Section 3.2 were conducted on this subset of solvable tasks.

The experimental results are shown in Table 2. For LLM experiments, an average accuracy of 9%
was observed when the test output was provided, and 3% without the test output. Compositionality
strengthened when human explanations were included in the prompt, showing a similar improve-
ment rate to the test output condition. Cronbach’s alpha measurements showed consistency in
responses, with all four experiments scoring above 0.7.

For human experiments, participants solved an average of 137 tasks, achieving approximately
86% accuracy on solvable tasks. This significant performance gap between LLMs (3-14%) and
humans (86%) suggests that despite having access to the same information and tools, LLMs face
fundamental challenges in DSL composition that humans can naturally overcome.
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Table 2. Average accuracy from 10 repeated experiments based on the presence or absence of test output and
human descriptions. The values in parentheses are Cronbach’s alpha, and X’ indicates that this condition
was not applicable for human experiments as they performed the tasks without test outputs. In all the results
in the table, Cronbach’s alpha is greater than 0.7, indicating consistency.

w/o Human Description w/ Human Description Accuracy of Human

w/o Test Output 3% (0.93) 8% (0.97) 86%
w/ Test Output 9% (0.96) 14% (0.96) X

3.2.3  Analysis of compositional failures resulting from DSL misinterpretation. The issue is that
the average accuracy described in Table 2 doesn’t solely reflect compositionality. DSL provides a
step-by-step manner to represent solution steps in ARC tasks. When we use a DSL to solve these
tasks, we can think about the likelihood of choosing the right DSL for each step in two parts: 1)
How well LLMs understand the DSL: This is reflected in how accurately it can predict the next
grid when given the DSL instructions. 2) How necessary each predicted grid is in creating the final
solution: This relates to how well the steps fit together to solve the task.

The overall chance of picking the correct DSL for all steps depends on both of these factors
working together. To solve a task, all DSLs must be correct for 10 steps. Based on our preliminary
analysis, we modeled this relationship as a multiplicative interaction between DSL understanding
and compositional difficulty, as shown in Eq. 1. In this equation, n represents the DSL sequence
length, w, represents the number of tasks that need n steps to solve, p represents the single-step
accuracy, and x represents the difficulty of composition for each task. We assumed that the LLM’s
compositionality could vary depending on the information provided to the LLM and the task.

10 1 Wn - (p-x)"
y= 10 (1)
Zn 1 Wn
To determine the task accuracy considering only the compositional difficulty, we must estimate
the y value when p = 1. Therefore, we conducted an additional experiment, as shown in Fig. 12 to
verify the probability of not finding an appropriate DSL due to the inability to predict the output

grid when selecting a DSL.

Initial input Output 1 Outputn
- DSL 1 DSL n
Ea |
Generate grid Generate grid
Solution DSL Solution DSL
DSL 1: move_down DSL n: object_color

Fig. 12. Overall process of an experiment in understanding DSL. The task for the LLM is to accurately
generate a grid transformed by the DSL when given a grid and its corresponding DSL. Each task involves a
DSL sequence ranging from 1 to 10 steps, using trajectories previously solved by humans.

In the additional experiment, we focused on 158 tasks selected from the 800 publicly available
ARC tasks, specifically choosing those that could be solved within 10 DSL steps. We checked how
accurately the LLM could generate the correct output grid when given both the DSL and ARC input
grid. Each task was repeated 10 times to ensure reliability. For these experiments, we provided the
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LLM with correct DSL operations and argument chains created by human solvers. Among multiple
human solutions, we prioritized those with the shortest step length to minimize complexity. Since
both the input grid and DSL instructions were provided, LLM should be able to produce the correct
output grid regardless of the sequence length, assuming perfect DSL comprehension.

The relationship between DSL sequence 101
length and LLM’s prediction accuracy is S os]
shown in Fig. 13. As the required sequence £
length increases, we observe a clear decline g 0.6+
in the model’s ability to predict correct out- £

put grids. Based on these observations, we S o
calculated a weighted average single-step ac- 8 o2/
curacy p using Eq. 2, where w, represents the

i oot
number of tasks with sequence length n, and P Y S R S S S S A
a, represents the prediction accuracy for that DSL Sequence Length
length. This calculation yielded an estimated
single-step accuracy of 81%, indicating that

errors compound significantly with longer se- Fig. 13. Model’s accuracy in predicting output grids

for DSL sequences of varying lengths (1-10 opera-

quences. 10 tions). The y-axis shows the success rate of grid pre-
p= W (2) diction after applying the given DSL operations. The
=1 Wn DSL comprehension tends to decrease with longer

sequences.

Table 3 presents the estimated accuracy when assuming perfect DSL understanding (p = 1.0,
adjusted from the observed p = 0.8). This adjustment isolates the impact of compositional ability
alone, showing that under ideal conditions with both test output and human descriptions provided,
nearly 30% of tasks could be solved. The consistent 10 percentage point improvement observed
when adding either the correct answer or natural language descriptions suggests that each element
reduces the compositional difficulty (represented as x in Eq. 1) of the tasks.

Table 3. The table of results shows the accuracy estimates obtained using Eq. 1, assuming that the LLMs
have a 100% understanding of DSL, meaning the single-step accuracy p is 1.0.

w/o Human Description w/ Human Description

w/o Test Output 5% 15%
w/ Test Output 17% 29%

3.24 Case Study: Enhancement of Compositionality through Human Descriptions. One notable
observation was the enhanced compositionality when human descriptions of problem-solving
methods were included in prompts. To investigate how LLMs could solve tasks with human descrip-
tions, we analyzed the solution processes of 13 additional tasks solved when human descriptions
were provided. Results indicate that human descriptions facilitate task input and action abstraction,
thereby improving problem-solving capabilities. For instance, LLMs fail to recognize patterns in
the correct output without descriptions; however, they immediately identify patterns such as an
‘X’ shape with descriptions. These findings suggest the potential to enhance LLMs’ reasoning
performance by incorporating abstracted task information.

3.25 Conclusion. In Section 3.2, experiments using ARC and DSL were conducted to measure the
compositionality of LLMs. The results led to three conclusions. First, LLMs could predict the output
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grid when DSL was applied to the input with an average accuracy of about 81%. However, as the
sequence length increased, the accuracy decreased, which appears to be due to cumulative errors.
Second, when not given the correct answer, LLMs selected the correct DSL only 3% of the time,
indicating a lack of ability both in inferring rules to predict the correct output grid and in selecting
the appropriate DSL to reach the expected output. Finally, when human descriptions were added,
the accuracy in choosing DSL increased to a level similar to when the correct answer was provided.
Analysis of this process suggested that this improvement was due to linguistic abstraction of the
ARC task and DSL combinations.

Previous studies have emphasized LLMs’ limitations in combining simple elements to create
new meanings, revealing struggles with compositionality. One study shows Transformers exhibit
significant performance drops when tested on new function combinations, indicating challenges
in systematically generalizing knowledge [25]. Another study introduced datasets like SADE to
evaluate LLMs’ ability to process visual and textual information, suggesting they still struggle with
tasks like understanding negations and grasping complex content [38]. A further study examined
how well LLMs can break down complex instructions or build them from simple ones. These found
that while LLMs improve at understanding simple tasks by learning complex ones, they struggle
with complex tasks when starting from simpler ones [73]. These findings across studies point to
ongoing challenges in LLMs’ ability to connect simple and complex elements, highlighting their
compositionality limitations.

3.3 Capability of LLMs 3: Productivity

3.3.1 Motivation. In Section 3.3, we investigate the third concept of LoTH: productivity. Produc-
tivity refers to the ability to generate unseen representations based on observed data [18]. This
characteristic enables humans to imagine diverse situations from a single phenomenon, facilitating
efficient learning without the need for repetitive data exposure. Similarly, when endowed with
this ability, LLMs are expected to excel in unseen tasks, making productivity a crucial function
of essential reasoning. The capacity to generate new pairs within a constrained set of rules is
particularly valuable for solving ARC tasks, highlighting the need for productivity. In this section,
we will assess productivity by evaluating the validity of LLM-generated examples based on given
example pairs from ARC tasks.

While productivity ideally involves testing for infinite generative capacity, practical limitations
necessitate alternative approaches. The challenge lies in demonstrating that a system can produce an
unlimited number of novel, meaningful outputs from a finite set of inputs and rules. Previous studies
have addressed this challenge by examining whether valid outputs can be produced under added
constraints [25, 31, 59]. These constraints serve to create a more manageable testing environment
while still allowing for the assessment of generative capabilities. Following this methodology, our
study investigates how effectively LLMs can generate valid outputs when presented with an ARC
task and its underlying conceptual rule. This approach allows us to evaluate productivity within a
controlled framework while still capturing the essence of generative capacity.

To understand how well LLMs can generate new expressions based on inherent logical con-
cepts, we conduct experiments using ARC tasks. Productivity in this context involves two main
steps: 1) inferring specific rules for image generation from example images and natural language
expressions, and 2) applying these rules to generate new, unseen images. However, as explored in
previous sections, the standard approach to solving ARC tasks is insufficient to confirm these two
processes. Therefore, we propose a novel experiment: Given an ARC task and a basic rule shared
with similar ARC tasks, can LLMs generate valid examples of the given task? If LLMs can understand
the relationship between the given ARC task and the abstract rule, they should be able to infer
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specific rules for the task and generate new valid examples. Through this, we aim to determine
whether LLMs can imitate the productivity of human thinking in generating novel solutions.

Prompt: Inverse Transformation

“Carefully examine above below task
and find the common rule.”
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{task examples}
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“Generate possible inputs
Can we augment corresponding to a target output.”
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Fig. 14. Overall process of possible input generation with the Inverse Transformation Prompt (ITP). With ITP
and one example of the task, LLMs generate input candidates of the output for the given example. If these
generated inputs are valid, pairs created by these inputs and the given output can become new examples.

3.3.2  Validity of Augmentation. To evaluate whether LLMs can infer their own generation rules
given ARC examples and create new tasks by appropriately applying these rules, we rigorously
controlled the prompts. While ARC provides a diverse set of tasks, it lacks systematic categorization
and explicit rules for each task. Therefore, we utilized ConceptARC [43], which maintains the same
format as ARC but provides categories for each task, making it more suitable for our experimental
design. We provided LLMs with two types of prompts: example pairs from the ConceptARC task
and abstract rule descriptions applicable to similar tasks. In this step, one example pair served
as the basis for generation, while the others were used to infer task-specific rules. Based on the
ConceptARC framework, the tasks are organized into 16 distinct categories. For each category
within ConceptARC, a corresponding abstract rule ensures that tasks within the same category
adhere to the identical abstract rule.

We proposed the Inverse Transformation Prompting (ITP), a prompting technique for this exper-
iment. ITP instructs LLMs to generate multiple valid examples by leveraging both the ConceptARC
task and its associated abstract rules. Fig. 14 demonstrates how LLMs generate new examples,
given the ConceptARC task and the corresponding ITP. Using this method, LLMs produce multiple
inputs that can pair with the output from one example of the task. This example for generation is
excluded from the ITP. If LLMs understood the ConceptARC task rules provided through ITP, the
new example pairs generated by LLMs would be suitable as examples of the task.

ITP is based on a many-to-one approach to achieve two advantages. First, the input-only gen-
eration method is more data-efficient than generating both input and output, as existing task
outputs can be reused without modification. Since all tasks in ConceptARC have example pairs,
reusing these examples fully utilizes the given data. ITP allows a single ConceptARC task to be
reused multiple times. In particular, using ITP can further increase data efficiency by allowing
one ConceptARC task to be reused multiple times by changing the order of examples. Secondly,
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ITP increases the likelihood of generating valid responses. Through simulations, we observed that
inferring inputs from outputs is more likely to generate valid results than the reverse. Because
generating input from output is subject to relatively fewer constraints, there is a wide range of
acceptable outcomes.
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(a) Even within the same category, tasks can (b) Depending on the task, there may be multiple
showcase varied objectives and complexities. The or a unique input for an output. The left shows a
left task requires removing vertically striped ob- task of completing a square with various inputs,
jects, while the right focuses on recoloring ob- and the right combines specific shapes, leading
jects based on their orientation. to a unique input.

Fig. 15. There are two challenges when LLMs generate examples through ITP: (a) task diversity within
categories and (b) inflexibility in task-specific examples. These may cause difficulties in the process of LLMs
generating examples through ITP.

In the process of creating ITP, we encounter two challenges. First, according to the ConceptARC
category, tasks within the same category can have different specific objectives. Fig. 15a illustrates
that there are various types of tasks with the same category. For example, even within the same
category, the core solution for one task might involve removal, while another might focus on
recoloring. This variation highlights that abstract rules given in the same sentences for each
category may not be sufficient to cover various types of tasks. Second, there were ConceptARC
tasks that made it impossible to infer multiple inputs from a single output (Fig. 15b). In such cases,
there was only one valid input. Although we tried to take these cases into account while writing
the ITP, these challenges nevertheless harmed the experimental results.

Before analyzing the experimental results, it was necessary to redefine the evaluation metric to
reflect a shift in focus from solving tasks to generating valid examples. As previously explained,
for a given example of a particular task, we generated valid inputs that could be paired with the
corresponding output. To successfully generate these inputs, the LLM must derive the task’s specific
rules through its ITP and apply them to the output to create valid inputs. In this experiment, we
evaluated whether all generated inputs were valid for each task. This metric assesses both the LLM’s
understanding of the correct rules and its ability to generate valid examples based on those rules.
Consequently, this experiment systematically evaluates the LLMs’ capability to generate logical
and valid demo pairs, enhancing our understanding of their ability to create new representations.

Based on 160 ConceptARC tasks, we evaluated the validity of 2,913 generated examples. The
average valid generation ratio was approximately 17.1%, with the remaining examples deemed
invalid. As previously mentioned, the validity of the generated examples was determined by
human judgment, assessing whether the generated tasks adhered to the analogical rules required
to solve the task. The results in Table 4 show that LLMs exhibit a degree of capability in generating
examples that align with the specified rules. However, there is a limitation due to weak criteria for
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Table 4. The ratio of valid examples among examples generated for each category of ConceptARC.

Category Generated Valid Validity
Above Below 158 34 21.52%
Center 236 35 14.83%
Clean Up 183 83 45.36%
Complete Shape 147 37 25.17%
Copy 153 4 2.61%
Count 202 29 14.36%
Extend To Boundary 167 8 4.79%
Extract Objects 176 21 11.93%
Filled Not Filled 203 29 14.29%
Horizontal Vertical 114 7 6.14%
Inside Outside 191 24 12.57%
Move To Boundary 165 12 7.27%
Order 162 26 16.05%
Same Different 246 76 30.89%
Top Bottom 2D 255 59 23.14%
Top Bottom 3D 215 25 11.63%
Total 2,913 509 17.12%

determining validity: even if infinite results can be generated, they cannot be reliably used without
post-processing the data.

3.3.3 Case Study: Invalid Production. We analyzed the generated inputs to investigate the reasons
behind LLMs’ inability to produce valid inputs for ConceptARC tasks. Two major limitations were
observed when LLMs generated new ConceptARC tasks. First, LLMs tended to simply copy inputs
rather than infer meaningful rules from given example pairs. As shown in Fig. 16, this occurred
repeatedly despite attempts to prevent it through prompts. Second, LLMs failed to properly consider
the steps needed to generate inputs from given outputs. This frequently resulted in the creation of
examples that could not be solved by the specific rules of the task. For instance, in cases where all
vertices of a square were erased in the input, it became impossible to determine the color of the
vertices, making it infeasible to infer the given output. These limitations suggest that LLMs lack an
understanding of the semantics applicable to ConceptARC tasks and the ability to compose these
semantics according to constraints.

3.3.4 Conclusion. In Section 3.3, we conducted experiments to confirm the productivity of LLMs by
assessing whether they can understand given tasks in abstracted representations and generate valid
new examples based on abstracted rules. Although it is known that LLMs have great strengths in
creating creative works, our experimental results reveal that LLMs are weak in understanding rules
and producing creations that adhere to those rules. Moreover, the observed limitations highlight a
critical gap in LLMs’ ability to engage in higher-level reasoning and abstraction, which are essential
for successfully solving tasks that require an understanding of underlying principles rather than
surface patterns. These results suggest that when LLMs generate outputs, they tend to mimic
human-created results rather than truly understanding and applying rules. This makes it difficult
for LLMs to reach the level of generation that humans can achieve.

Similarly, previous studies have shown similar results in measuring the productivity of Al models.
Researchers tested how well pre-LLM models generalize to novel command combinations [31,
59]. Their findings revealed strong performance on trained data but weaknesses in generating
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Fig. 16. Two incorrect generations for the task of completing the square shape: (a) The LLM generates the
input from another example’s output, and (b) the input does not provide enough information to infer the
square’s corner colors.
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responses to unseen commands. Some researchers argued that LLMs struggle with generation under
complex constraints and proposed improved models to address this issue [29, 35]. They propose
novel frameworks to enhance LLMs for generating desired outputs when complex constraints are
introduced, rather than relying solely on the base models. These researches share similarities with
our study, which encountered difficulties in augmenting valid tasks based on complex rules.

4 Discussion

Through the three experiments in Section 3, we have observed that LLMs demonstrate strengths in
understanding and manipulating both image and text inputs. However, they still exhibit weaknesses
in logical inference, sequential planning based on understanding, and generating unseen images
according to predefined rules. We will conclude by introducing the current research directions
aimed at further enhancing LLMs’ ability and outlining the goals after solving ARC.

4.1 What Should LLMs Possess to Solve ARC?

Based on the experimental results of Section 3, it is evident that LLMs still cannot solve ARC effec-
tively. This is attributed to the deficiencies in logical coherence, compositionality, and productivity.
How can we improve the inference capabilities of LLMs? In this section, we explore directions to
enhance LLMs from the perspectives of abstraction knowledge and reasoning.

4.1.1 Abstract Knowledge. To solve ARC, the first challenge lies in extracting its implicit informa-
tion. Xu et al. [70] emphasized the importance of object-based representation and proposed ARGA,
which transforms example grids into graphs. Their follow-up study [71] demonstrated notable
performance in object-based ARC tasks by leveraging ARGA-generated information. However,
these methods have a critical limitation: they are inapplicable to ARC tasks without objects. Since
only about 40% of ARC tasks involve object concepts [70], this approach cannot address more than
half of the tasks. Wang et al. [64] partially enhanced LLM abstraction with a graph-form dataset,
AbsPyramid, containing 221K textual descriptions, and proposed a framework called AbsInstruct.
While structuring sentences can effectively abstract natural language, this approach is ineffective
for ARC, which does not involve textual data.

4.1.2 Reasoning. Another challenge for LLMs in ARC is the vast search space. A promising
approach involves enabling LLMs to generate DSLs themselves. Rajani et al. [48] introduced
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CAGE, which prompts LLMs to generate explanations before generating answers. Subsequently,
Wang et al. [62] reported improved results by having LLMs generate DSLs based on hypotheses
they set themselves. Additionally, active research is underway on prompting techniques applying
algorithmic approaches. Zhou et al. [79] demonstrated enhanced inference performance in LLMs
by applying in-context learning. Follow-up research is being conducted following CoT and ToT. For
example, CoT-SC [63] is a study that selects results through voting from multiple instances of CoT,
GoT [3] secures flexibility by enabling the generation of graph-like thought nodes, and XoT [14]
uses the thought tree while Monte Carlo tree search and refines the tree with reinforcement learning.
However, these attempts are closer to additional learning for LLMs, and more research is needed to
ascertain whether fundamental improvements in LLMs’ reasoning abilities are achievable.

4.2 Future Direction After Solving ARC

Solving ARC tasks does not directly imply achieving human-level artificial intelligence. Moreover,
there is a challenge in comparing task-solving approaches with those of humans. Thus, we suggest
three alternatives to more accurately measure human-level inference abilities.

4.2.1 Using Different Benchmarks. One limitation of ARC is its simple environment. SQA3D [39], for
instance, addresses inference tasks in a 3D domain by extending them into question-answering tasks
using simulators like ScanNet [12]. Additionally, benchmarks such as TGIF-QA [26], MovieQA [55],
TVQA [32], and STAR [69], which append question-answering to videos, have been proposed. Such
benchmarks mimicking real-world inference scenarios could serve as supplements to measure
complex abstractions not covered by ARC.

4.2.2  Quantification of ARC Task-Solving Processes. Chollet, the creator of ARC, argued that ARC
maximizes generality while minimizing prior and experience [8], but these components have
not been quantitatively evaluated. As a result, the quantitative assessment of factors such as the
generality achieved by models solving ARC, the level of prior knowledge, and the components
of prior knowledge remains elusive. One possible way to quantitatively evaluate the process of
solving ARC tasks is to quantify the model’s achievement of prior, experience, and generality.

4.2.3 Adding Evaluation Methods to Compare Task-Solving Processes with Human Approaches.
Recent ARC research has focused on finding ways for Al to solve tasks. However, there are doubts
about how similar these solutions are to those of humans. The initial paper by Johnson et al. [27]
analyzed human ARC solutions. Subsequently, LARC [1] was proposed to analyze how tasks
are solved through the language-based explanation of human solutions. Tools for facilitating the
collection of human data are also continuously being developed. Kim et al. [28], for instance, have
analyzed how tasks are solved through O2ARC. Based on these studies, we suggest calculating
each ARC task’s correctness and adding similarity with human data to the evaluation.

4.3 Recent Research Trends on the Reasoning Abilities of LLMs

In this paper, we utilized the ARC to evaluate and enhance the reasoning capabilities of LLMs.
ARC serves as a crucial benchmark for testing AI models’ ability to perform human-like reasoning.
Beyond ARC, datasets such as DROP [15], CommonsenseQA [54], BoolQ [10], and GSM8K [11]
provide invaluable resources to enhance the diverse reasoning capabilities of LLMs.

Recent studies indicate that LLMs still exhibit significant limitations in their reasoning abilities
despite their proficiency in language-based tasks. LLMs still exhibit significant limitations in their
reasoning abilities. Carvalho et al. [13] found that LLMs struggle with reasoning and decision-
making in tasks beyond their training data, particularly in non-linguistic tasks requiring strategic
thinking and spatial reasoning. Similarly, Gendron et al. [21] revealed poor performance on tasks
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requiring the identification and application of general patterns from limited examples. These studies
collectively highlight that current LLMs, though advanced in linguistic tasks, are still far from
achieving robust reasoning abilities across diverse domains.

To address these limitations, several advanced approaches have been developed. These in-
clude reinforcement learning with human feedback [9], CoT prompting [65], reasoning-centric
fine-tuning [33], incorporating knowledge graphs during pre-training [36], and explainable Al
techniques [4]. These approaches play a crucial role in advancing LLMs’ reasoning capabilities
across various domains.

Moreover, recent research has introduced innovative approaches to further augment the reasoning
capabilities of LLMs. These include multimodal learning techniques [52], adaptive learning strategies
with human feedback [45], and integration of programming languages with LLMs [19]. These
cutting-edge studies significantly contribute to systematically strengthening the multidimensional
reasoning capabilities of LLMs.

5 Conclusions

This study addresses the limitations of result-oriented analysis in LLMs’ reasoning abilities by
adopting the Language of Thought Hypothesis (LoTH). While recent LLMs have shown performance
levels close to humans, experiments reveal significant gaps in planning and reasoning. Through
LoTH’s three components—logical coherence, compositionality, and productivity—we provide a
structured approach to evaluate the reasoning process rather than just outcomes.

Using the Abstraction and Reasoning Corpus (ARC) as our benchmark, we conducted three
quantitative experiments:

(1) Logical Coherence: Our analysis revealed significant gaps in both inferential and semantic
coherence. While LLMs occasionally produced correct answers, they frequently failed to
maintain logical consistency across similar problems and often derived correct results
through flawed reasoning processes.

(2) Compositionality: LLMs showed fundamental limitations in combining simple compo-
nents to solve complex problems. Their performance degraded significantly with increasing
task complexity, and they struggled with DSL selection even when provided with additional
context, indicating weak compositional abilities.

(3) Productivity: LLMs demonstrated significant weaknesses in a rule-based generation despite
their known capabilities in creative tasks. They often resorted to mimicking observed
patterns rather than truly understanding and applying abstract rules to generate valid new
examples.

These findings suggest that current LLMs, despite their impressive performance metrics, lack
fundamental reasoning capabilities when evaluated from a process-oriented perspective. To advance
toward human-level artificial intelligence, future research should pursue three complementary
directions. First, LLMs need enhancement in both abstraction knowledge and reasoning capabilities:
this could involve developing better representation methods for implicit information extraction
and exploring advanced prompting techniques to handle vast search spaces efficiently. Second,
to ensure meaningful progress, we need to develop more comprehensive evaluation frameworks
that can: (1) incorporate diverse benchmarks that better reflect real-world reasoning scenarios; (2)
quantitatively measure solution processes beyond mere task completion; and (3) enable systematic
comparisons between Al and human reasoning approaches. This study ultimately contributes to the
field by providing a structured framework for evaluating and advancing Al reasoning capabilities,
highlighting the importance of aligning Al development with human cognitive processes.
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A  Supplementary Analysis
A.1 Comparing LLM and Human Problem Difficulty Perception

Following the analysis in Section 3.1.4, we analyzed problems that LLMs (Large Language Models)
solve well and those they struggle with. Table 5 presents the accuracy of LLMs across problem
difficulty levels classified by humans. The classification was based on the existing categorization,
relying on perceived difficulty by humans [5]. As a result, we discovered a tendency where problems
perceived as difficult by humans align closely with those challenging for LLMs. Difficult problems
shared two commonalities: 1) they required lengthy inference processes to solve, and 2) they
involved considering multiple simultaneous problems to extract information about changes. An
example from Fig. 17 illustrates this point: a task classified as ‘Entry’ only requires a single step of
coloring, while a task classified as ‘Hard’ requires three steps: recognizing each object, identifying
the priority of each object, and merging each object considering their priority. ‘Easy’ and ‘Medium’
are tasks that require relatively more complex steps than ‘Entry’ and fewer steps than ‘Hard’.
Considering these observations, it can be inferred that artificial intelligence possesses simple
forms of visual logic that deal with only one of the four priors included in ARC: objectness, goal-
directedness, numbers and counting, and basic geometry. However, it cannot handle complex
combinations of logic that integrate these priors.
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Fig. 17. Showcases of ARC tasks organized by human-perceived difficulty levels. These tasks illustrate
the spectrum of complexity that humans use to rate problems, ranging from single-step ‘Entry’ level
tasks to multi-step ‘Hard’ challenges. The difficulty classification reflects both the depth of inference
required and the number of logical operations needed to reach a solution, paralleling the varying success
rates of LLMs in tackling these tasks.

Table 5. Analyzing LLMs’ reasoning capabilities by task difficulty, following prior categorization [5]. The
number of ARC tasks corresponding to each category is listed in the table, and the experiment was performed
five times for each task.

Entry Easy Medium Hard

Tasks 2 20 46 14
Trials 10 100 230 70

CoT 100.00%  30.00% 0.00% 0.00%
LtM 20.00%  19.00% 0.00% 2.85%
ToT 50.00% 22.00% 0.00% 0.00%

Average 56.67%  23.67% 0.00% 0.95%
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A.2 Comparison of Augmentation Cost-Efficiency across GPT Versions

In a follow-up experiment to our productivity study, we aimed to compare the cost-efficiency
of GPT-3.5 and GPT4-32k when augmenting demonstration example tasks. This investigation
was crucial to understanding the trade-offs between model performance and associated costs in
real-world applications.

Our experimental setup began with the creation of a prompt describing the category. Using
this prompt, we developed an Inverse Transformation Prompt (ITP) and proceeded to augment
demonstration examples using both GPT-3.5-16k and GPT-4-32k models. Throughout this process,
we meticulously logged all prompts given to the LLMs and their corresponding responses.

To analyze the cost implications, we tokenized the logged text using the tiktoken library. We
then calculated the cost of generating a single valid demonstration example based on the per-token
cost specified by the Azure OpenAl API. This approach allowed us to accurately assess the financial
implications of using each model for demonstration example augmentation. Validation of the
generated examples was a critical component of our experiment. We employed human reviewers
to manually verify the quality and appropriateness of the outputs. These reviewers were tasked
with confirming two key aspects:

(1) Whether the results could be legitimately generated from the given rules.
(2) If the generated results were unique, avoid repetition or trivial variations.
This rigorous validation process ensured that our assessment of “valid” examples was thorough
and meaningful in the context of practical applications.

Table 6. Comparison of augmentation cost-efficiency across GPT versions. The experiment was conducted on
each demonstration example pair within the 16 task categories of Concept ARC. This table shows the results
of LLMs generating valid demonstration example pairs and costs.

Generated Example Valid Example Validity Cost per Valid Example

GPT-3.5-16k 346 24 6.94% $0.0275

GPT-4-32k 411 40 9.73% $0.3925

Analysis of the cost to generate valid demonstration examples, as illustrated in Table 6, reveals
that while GPT-4-32k showed approximately 1.5 times higher performance in terms of validity
compared to GPT-3.5-16k, its cost was nearly 20 times higher. This suggests that productivity gains
may not scale linearly with model capability and cost, especially when generating outputs under
complex constraints. Consequently, in scenarios requiring valid outputs under intricate constraints,
GPT-3.5 might be preferable to GPT4-32k when considering the trade-off between performance
improvement and cost increase. However, the low overall validity rate of less than 10% for both
models indicates that current LLMs still have significantly lower productivity compared to humans
in such tasks. This finding suggests that merely upgrading to more advanced models is unlikely to
fully resolve the productivity gap, highlighting the need for further research and development in
enhancing LLM performance for complex, constrained tasks.

A.3 Limitations of ARC as a Benchmark for Human-Level Al

Does solving ARC signify the completion of human-like AI? To answer this question, two doubts
need to be appropriately addressed: 1) Will the ARC solver possess human-level problem-solving
abilities? and 2) Will that solver think like humans to solve ARC? It is not easy to imagine how the
ARC solver operates without human-level reasoning. At this point, what we can assume is that the
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model will have the three properties of LoTH, and the model could be capable of several types of
reasoning included in ARC. With this hypothesis, we attempt to address the following questions.

A.3.1  Will the Model Possess Human-Level Problem-Solving Abilities? Being capable of reasoning
does not necessarily equate to having human-level problem-solving abilities. In other words, even
if a model can reason to a level that can solve ARC, it may not have human-level problem-solving
capabilities. Various tasks that humans face are generally more complex than ARC and involve
various other cognitive factors besides reasoning. Therefore, even models that can solve ARC may
have the following limitations compared to human-level problem-solving abilities.

First, with the current ARC criteria, it is still unknown whether the model that solved it can solve
more complex types of tasks. This is because ARC tasks focus on just reasoning and are therefore
presented in a relatively simple environment. Whether the reasoning ability learned through ARC
would also work in more complex environments has not been revealed. Second, solving ARC does
not imply the presence of other components of intelligence beyond reasoning. While reasoning
is undoubtedly a core aspect of cognitive processes, it is not the entirety of intelligence. There is
research showing that solving human-level complex tasks requires various cognitive abilities [20].

A.3.2  Will the Model Think Like Humans? Even if we assume that the ARC solver can reason
in terms of LoTH, we cannot guarantee whether this solver’s process is human-like for the fol-
lowing two reasons. Firstly, the current ARC provides a performance measure that rewards only
for solving a task. It is important to recognize that such a measure might instigate the wrong
purpose, leading to what is known as the King Midas problem [50]. This problem emphasizes the
risk of Al achieving its given objective too literally, leading to unintended negative consequences,
underscoring the importance of aligning Al's goals with human values and the broader context. The
policy of rewarding only the results, excluding the solution process, makes it difficult to evaluate
whether the solution process is similar to human reasoning. Therefore, models trained on current
ARC likely differ in how they solve tasks compared to humans. The second reason is that directly
comparing the reasoning processes of humans and language models is challenging. The process
by which humans solve ARC tasks has not been investigated, making it unclear how the solving
process differs between humans and artificial intelligence. Furthermore, there is a lack of metrics
for comparing the solving processes, making direct comparisons difficult.

B Experimental Detail
B.1 Logical Coherence

The logical coherence study comprised two main experiments: a comparison on semantic coherence
across prompting techniques and an assessment of the inferential coherence of LLMs. For the
first experiment, prompting technique comparison, we randomly selected 100 tasks from the ARC
evaluation set. We then applied three different prompting methods - Chain of Thought (CoT), Least
to Most (LtM), and Tree of Thoughts (ToT) - to compare their effectiveness in maintaining semantic
coherence.

The second experiment assessing the inferential coherence of the LLMs aims to assess whether
the same logic can be consistently applied. Therefore, it is necessary to first confirm the tasks
where the LLMs have understood the logic. To this end, we experimented using CoT prompting,
which showed the best performance in the comparison across prompting techniques experiment,
to solve the ARC training set. This experiment was repeated five times. The inferential coherence
of the LLMs experiment was then conducted on tasks that were correctly solved at least once out
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of the five repetitions. The detailed task IDs and prompts used in each experiment are provided in
B.1.1 and B.1.2, respectively.

B.1.1  Task ID List for Each Experiment. Task ID list selected for the experiment comparing logical
coherence. The first experiment for comparison across prompting techniques was conducted on
100 ARC evaluation tasks, while the second experiment for the inferential coherence experiment of
LLMs was carried out on 83 ARC training tasks.

Task ID List: Comparison Across Prompting Techniques

‘3ed85e70’, ‘0f63c0b9’, ‘17caelcl’, ‘47996f11’, ‘4acc7107’, ‘0692e18c’, ‘477d2879°, ‘1c0d0a4b’,
292dd178’, ‘1990f7a8’, ‘22a4bbc?2’, ‘4364c1c4’, ‘2f0c5170°, ‘17b80ad2’, ‘03560426°, ‘0c786b71’,
3391f8c0’, ‘42a15761°, ‘0Obb8deee’, ‘1€97544¢’, ‘1c02dbbe’, ‘4b6b68e5’, ‘2a5£8217°, 3194b014,
‘lacc24af’, ‘0c9abate’, ‘0e671ala’, ‘37d3e8b2’, ‘Obecf7df’, ‘0607ce86’, ‘3a301edc’, ‘2546ccf6’,
‘009d5c81’, ‘31adaf00’, ‘281123b4’, ‘3d31c5b3’, ‘423a55dc’, ‘1d0adb61’, ‘1a2e2828’, 319f2597°,
3979b1a8’, ‘12422b43’, ‘140c817¢’, ‘0a2355a6’, ‘19bb5feb’, ‘332efdb3’, ‘27a77e38’, ‘2cOb0aff’,
‘00dbd492’, ‘2c737e3’, ‘2072aba6’, ‘48f8583b’, ‘27f8cedf’, ‘14754a24’, ‘32€9702f’, ‘195ba7dc’,
‘137f0df0’, ‘184a9768’, 29700607’, ‘1c56ad9f’, ‘15663ba9’, ‘4c177718’, ‘136b0064°, ‘0ald4ef5’,
‘1d398264°, ‘09c534e7’, ‘2685904¢€’, ‘48131b3c’, ‘31d5bala’, ‘2697da3f’, ‘103eff5b’, ‘12997ef3’,
‘1e81d6f9’°, 25094a63°, ‘08573cc6’, ‘20981f0¢’, ‘4852f2fa’, ‘2b01abd0’, ‘2072aba6’, ‘1a6449f1’,
34b99a2b’, ‘0b17323b’, ‘15696249’, ‘414297¢c0’, ‘2753e76¢’, ‘12eac192’, ‘0934a4d8’, ‘3103251’
‘358ba94e’, ‘21f83797°, ‘4aab4007’, ‘351d6448’, ‘45bbe264’, ‘456873bc’, ‘15113bed’, ‘3490cc26’,
3b4c2228’°, ‘00576224°, ‘42918530°, ‘45737921°, ‘20818e16

Task ID List: Inferential Coherence of LLMs

‘017c7c7b’, ‘025d127b’, ‘08edbac?’, ‘0dfd9992’, ‘1bfca729’, ‘22eb0ac0’, ‘239be575°, ‘23b5¢c85d’,
25d8a9c8’, 25ff71a9’, ‘272f95fa’, 27228665, ‘3618c87¢’, ‘3af2c5a8’, ‘3bd67248’°, ‘3bdb4ada’,
‘44£52bb0’, ‘48d8fb45°, ‘496994bd’, ‘49d1d64f’, ‘539a4f51°, ‘53b68214°, ‘5582e5ca’, ‘5bd6fdac’,
‘6150a2bd’, ‘62c24649’, ‘67a3c6ac’, ‘67e8384a’, ‘68b16354’, ‘6d0aefbc’, ‘6f8cd79b’, ‘6fa7ad4f’,
“7447852a’, ‘746b3537’, ‘74dd1130’, ‘7837ac64’, ‘794b24be’, ‘7b7£7511°, ‘7f4411dc’, ‘82819916’,
‘88262173, ‘8be77c9¢’, ‘8e1813be’, ‘90c28cc7’, 9172f3a0’, ‘963e52fc’, ‘97999447°, ‘9dfd6313’,
‘a416b8f3’, ‘a65b410d’, ‘a699fb00’, ‘a85d4709’, ‘a87f7484’, ‘aabf363d’, ‘b1948b0a’, ‘b8cdaf2b’,
‘b94a9452’, ‘ba26e723’, ‘ba97ae07’, ‘bc1d5164°, ‘bd4472b8’, ‘bda2d7a6’, ‘bdadobif’, ‘c3f564a4’,
‘c59eb873’, ‘c8f0f002’, ‘c9e6f938’, ‘c9f8e694’, ‘d0f5fe59’, ‘d10ecb37’, ‘d13f3404’, ‘d2abd087’,
‘d4469b4b’, ‘d631b094’, ‘d8c310e9’, ‘d9fac9be’, ‘dc433765’, ‘e26a3af2’, ‘e9afcf9a’, ‘ea786f4a’,
‘ef135b50’, ‘f5b8619d’, ‘f76d97a5’

B.1.2  Prompting Setting. The prompts used in comparison across prompting techniques and
inferential coherence of LLMs are CoT, L2M, and ToT. These are detailed in Section B.1.3. In the
prompts, parts enclosed in curly brackets indicate where the corresponding type should be inserted.
Demo examples and test input refer to the demonstration examples and test input of the test example
provided in the task to be solved. For instance, if the type is CoT Prompt, it consists of the CoT
one-shot example, the task’s demonstration examples, and test input. Regardless of the prompting
method, all prompts are given a one-shot example. CoT solves the task using only the one-shot
example, the task’s demonstration examples, and test input. On the other hand, LtM and ToT use a
decomposing prompt to obtain instructions for solving the problem through a decomposing stage.
For LtM, the step-by-step solving prompt is then used to sequentially execute the instructions
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obtained through decomposing. The previously executed instructions and the resulting changed
grid are included in this process. For ToT, the decomposing prompt is used to create multiple
instruction candidates, and the ToT decomposing vote prompt is used to have the LLM select the
most promising instruction candidate. The selected instructions are then processed through the
step-by-step solving prompt to generate multiple candidate results for each instruction. The ToT
step-by-step solving vote prompt is then used to select the grid that best reflects the instruction.
This process is carried out step-by-step for all instructions.

B.1.3  Detailed Promptings. The logical coherence experiments employed various prompting tech-
niques, including CoT, LtM, and ToT. CoT utilizes the CoT prompt, while LtM uses decomposing and
step-by-step solving prompts. ToT incorporates decomposing, ToT decomposing vote, step-by-step
solving, and ToT step-by-step solving vote prompts.

CoT One-Shot Example Data

If input grids are like that:
[[0,3,0,0,0,0],
[0,3,0,2,0,0],
[0,0,0,2,0,0],
[0,8,0,0,2,2],
[0,0,0,0,2,2],
[6,6,6,0,0,0]],

then these grids change to output grids below:
[[0,0,0,0,3,0],
[0,0,0,0,3, 2],
[0,0,0,0,0,2],
[0,0,0,38,2,2],
[0,0,0,0, 2, 2]
[0,0,0,6,6, 6]

]

CoT One-Shot Example

Do you know the ARC problem?
It is similar to below.
{CoT One-Shot Example Data}

You can understand the pattern of this problem with the input-output pair in Example 1. In
the above case, you can infer as follows.

In Example 1, all objects move to the right, and then you can move the object to the right
side.

Like this concept, ‘object’, ‘count’, ‘color’, ‘move’, ‘row’, ‘column’, etc., help you to understand
the patterns of the problem and solve it.
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Below is another pattern to solve. So you can understand the pattern with several examples
and apply the problem’s input to get the correct output.

CoT Prompt

{CoT One-Shot Example}

{Demo Examples}

If input grids are like that:

{Test Input}

then output grids?

Decomposing One-Shot Example-Demo Examples
Example 1

If input grids are like that:
[[0, 0, 0,0,0,0],
[0,0,3,0,0,0],
[0,3,0,3,0,0],
[0,0,3,0,3,0],
[0,0,0,3,0,0],
[0,0,0,0,0,0]]

then these grids change to output grids below:
[[0, 0, 0,0,0,0],
[0, 0,3,0,0,0],
[0, 3,4,3,0,0],
[0,0,3,4,3,0],
[0,0,0,3,0,0],
[0, 0,0,0,0,0]].

Example 2

If input grids are like that:
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0,0,3,0,3,0,0,0,0, 0],
[0,0,0,3,0,3,0,0,0, 0],
[0,0,3,0,0,0,3,0,0, 0],
[0,0,0,0,0,3,0,3,0,0],
[0,0,0,3,0,3,3,0,0, 0],
[0,0,3,3,3,0,0,0,0, 0],
[0,0,0,3,0,0,0,0,0, 0],
[0,0,0,0,0,0,0,0,0, 0],
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[0,0,0,0,0,0,0,0,0,0]]

then these grids change to output grids below:
[[0,0,0,0,0,0,0,0,0, 0],
[0,0,3,0,3,0,0,0,0, 0],

[0,0,0,3,0,3,0,0,0, 0],
[0,0,3,0,0,0,3,0,0, 0],
[0,0,0,0,0,3,4,3,0,0],
[0,0,0,3,0,3,3,0,0,0],
[0,0,3,3,3,0,0,0,0, 0],
[0,0,0,3,0,0,0,0,0, 0],
[0,0,0,0,0,0,0,0,0, 0]
[ ]

0,0,0,0,0,0,0,0,0,0]].

Decomposing One-Shot Example-Test Input

Example-problem

If input grids are like that:
[[0,0,0,0,0,3,0,0,0,0],
[0,0,0,0,3,0,0,0,0, 0],
[0,3,3,0,3,3,0,3,0,0],
[3,0,0,3,0,0,3,0,3,0],
[0,0,0,3,0,0,3,3,0, 0],
[0,0,0,3,0,0,3,0,0, 0],
[0,0,0,3,0,0,3,0,0, 0],
[0,0,0,0,3,3,0,3,0, 0],
[0,0,0,0,0,0,0,0, 3, 0],
[0,0,0,0,0,0,0,0,0,0]]

then output grids?

Decomposing Prompt

Do you know the ARC problem?

Each example has the same pattern and the quiz also has the same pattern with examples.
So if you understand the pattern of examples, you can solve the quiz. It will help you to
analyze the pattern if you decompose the pattern into some steps. I give an example that
decomposes patterns into subquestions.

{Decomposing One-Shot Example-Demo Examples}
{Decomposing One-Shot Example-Test Input}

To solve the quiz, I think we should do something like below:
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Q1: We need to identify the places surrounded by 3s in the input grid of example-quiz.
Q2: Fill in the 4 in the location we found through Q1.

{Demo Examples}
{Test Input}

I want you to answer in the format below:

Q1: ...
Q2: ...

éN:

N is the index of the last question.

(The answers to the last question should allow you to generate the output grid for the
quiz, and you shouldn’t solve the problem yet in this process. You should only create the
subquestions for solving the problem.)

Step-By-Step Solving Prompt

{CoT One-Shot Example}

{Demo Examples}

If input grids are like that:
{Test Input}

then output grids?
{Previous Instructions}
{Previous Changed Grid}

{Current Instruction}

ToT Decomposing Vote Prompt

First, consider how to solve the problem below.

{Demo Examples}
{Test Input}

Then, given instruction and several choices, decide which choice is most promising. Analyze
each choice in detail, then conclude in the last line “The best choice is s", where s is the
integer ID of the choice.
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ToT Step-By-Step Solving Vote Prompt

First, consider how to solve the problem below.
{Demo Examples}
{Test Input}

Then, given a question and some answers, you need to choose which answer is the best
answer to the question. Analyze each choice in detail and then conclude on the last line,
“The best answer is ‘s’ where s is the integer ID of the answer.

{Previous Instructions}
{Previous Changed Grid}
{Current Instruction}

{Current Changed Grid}

B.2 Compositionality

In the compositionality study, we conducted two experiments: the LLMs DSL understanding
experiment to assess how well LLMs comprehend the provided DSLs, and an experiment to evaluate
LLMs’ compositionality ability. The LLMs DSL understanding experiment measures how accurately
LLMs can generate the correct DSLs when given the answer for a task. The compositionality ability
experiment examines whether LLMs can correctly select and use the necessary DSLs from those
provided for problem-solving. Both experiments used the same set of tasks. Detailed information
about the task IDs can be found in Table B.2.1, while the specific prompt details are available in
Table B.2.4 and Table B.2.6.

B.2.1 Task ID List. Task ID list for the compositionality experiment comprising 158 tasks. From
the total 800 ARC tasks, we selected only those problems where the input and output grid sizes
were identical and could be solved with DSL sequence length within 10 using the given DSL for
our experiment.

Task ID List: LLMs DSL Understanding & Compositionality of LLMs

‘025d127b’, ‘05f2a901°, ‘08edbac7’, ‘0ca9ddbé’, ‘0d3d703e’, ‘11852cab’, ‘150deff5’, ‘1b60fb0c’,
‘lcaeab9d’, ‘1e0a9b12’, ‘1f642eb9’, ‘1£876c06’, ‘2204b7a8’, ‘22168020°, ‘22233c11’, ‘2286490’
22eb0ac0’, ‘253bf280°, ‘25d487eb’, ‘25d8a9c8’, ‘25ff71a9’, 29¢11459’, ‘2beel7df’, ‘2c608aft’,
‘2dd70a92a’, ‘3345333¢’, ‘3618c87¢’, ‘36fdfd69’, 3906de3d’, ‘3aa6fb7a’, ‘3bd67248’, “3¢9b0459’,
3e980e27’, ‘3eda0437’, ‘40853293’, ‘42a50994’, ‘444801d8’, ‘44d8ac46’, ‘4938f0c2’, ‘496994bd’,
‘50846271, ‘508bd3b6’, 50cb2852’, ‘5168d44c’, 54d82841°, ‘5582e5ca’, ‘56dc2b01’, ‘56ff9613’,
‘5c0a986€’, ‘60b61512°, ‘6150a2bd’, ‘623ea044’, ‘63613498’, ‘67385a82’, ‘673ef223’, ‘67a3cbac’,
‘67a423a3’, ‘6855a6e4’, ‘68b16354’, ‘694f12f3’°, ‘6c434453’, ‘6c£79266’°, ‘6d58a25d’, ‘6d75e8bb’,
‘6e02f1e3’, ‘6e19193¢’, ‘6e82alae’, ‘74dd1130’°, ‘760b3cac’, ‘776ffc46’, ‘794b24be’, ‘7ddcd7ec’,
“7€0986d6’°, ‘7f4411dc’, ‘810b9b61°, ‘855€0971°, ‘88a10436°, ‘890034e9’, ‘8d510a79’, ‘90f3ed37’,
928ad970’, ‘93b581b8’, ‘°941d9a10’, ‘952a094c’, ‘9565186b°, ‘99fa7670’, ‘9dfd6313’, ‘a2fd1cf0’,
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‘a3df8ble’, ‘ad48eeaf7’, ‘a5313dff’, ‘a61f2674’, ‘a65b410d’, ‘a699fb00’, ‘a78176bb’, ‘a79310a0’,
‘a85d4709’, ‘a9f96cdd’, ‘aabf363d’, ‘ae3edfdc’, ‘aedd82e4’, ‘af902bf9’, ‘b1948b0a’, ‘b230c067’,
‘b2862040°, ‘b548a754°, ‘b7249182’, ‘b8cdaf2b’, ‘ba97ae07’, ‘bb43febb’, ‘bda2d7a6’, ‘bdad9obif’,
‘c0f76784’, ‘c80f002’°, ‘cbded52d’, ‘ce22a75a’, ‘ce9e57f2’, ‘d037b0a7’, ‘d07ae81c’, ‘d23f8c26’,
‘d2abd087’, ‘d406998b’, ‘d43fd935’, ‘d4a91cb9’, ‘d4f3cd78’, ‘d511f180°, ‘d5d6de2d’, ‘d6ad076f,
‘d89b689b’, ‘d8c310e9’, ‘d90796e8’, ‘d9f24cd1’, ‘dc433765’, ‘ddf7fadf’, ‘ded97339’, ‘e40b9e2f’,
‘e48d4ela’, ‘€5062a87’, ‘€509e548’, ‘€73095fd’, ‘e8dc4411’, ‘€9614598’, ‘e9afcf9a’, ‘ea32f347’,
‘ea786f4a’, ‘ec883f72’, ‘ed36ccf7’, ‘ef135b50°, ‘f25ffba3’, ‘f76d97a5’, ‘f8a8fe49’, ‘fcc82909’,
‘8f2ea7aa’, ‘5521c0d9’, ‘32597951°, ‘98cf29f8’, ‘0e206a2¢’, ‘a1570a43’

B.2.2  Types of DSLs used. Each DSL was implemented as a Python function. As shown in Table 7,
there are three types of DSLs using three parameter types. Color Change DSLs accept parameters
such as Coordinate and Object. Coordinate-based Color Change DSLs include Pixel Color, X
Line, Horizontal Line, Vertical Line, and Diagonal Line. For Object parameters, only the obj color
DSL exists. Transformation DSLs use Object and Grid parameters. Object-based transformations
include Rotate Left Obj, Rotate Right Obj, Horizontal Flip Obj, Vertical Flip Obj, and movement
operations (Move Left, Move Right, Move Up, Move Down). Grid-based transformations include
Rotate Left State, Rotate Right State, Horizontal Flip, and Vertical Flip. Lastly, the Complete DSL
exists independently of parameters, indicating task completion before reaching DSL sequence length
of 10. For tasks solved with exactly DSL sequence length of 10, the Complete DSL is unnecessary.

Table 7. DSL list: The DSL used in the compositionality experiment is categorized based on the type of
target and the kind of functionality. The targets in the DSL are categorized into three types: Coordinate,
Object, and Grid. The functions of the DSL include changing the color of a target (Color Change), moving a

target (Transformation), and indicating the completion of the task at DSL sequence length shorter than 10
(Complete).

Coordinate Object Grid
Pixel Color, X Line,
Color Change Horizontal Line, Vertical Line, Obj Color X
Diagonal Line
Rotate Left Obj, Rotate Right Obj,
Horizontal Flip Obj, Rotate Left State,
Transf tion X Vertical Flip Obj, Rotate Right State,
ranstormatio Move Left, Move Right, Horizontal Flip, Vertical Flip
Move Up, Move Down
Complete Complete

B.2.3  Prompt Contents for LLMs with DSL Codes and Comments . In the two experiments measur-
ing compositionality and LLM’s DSL understanding, we identified a set of 10 tasks that collectively
required the use of all 15 DSLs at least once. This set was used to determine the optimal prompt
for explaining DSLs to LLMs. We conducted experiments with four prompt variants: no DSL in-
formation, DSL code only, DSL comments only, and both DSL code and comments. The LLMs
DSL understanding experiment was performed for these 10 tasks across all four prompt compo-
sitions. Results indicated that providing both code and comments yielded optimal performance.
Consequently, we employed prompts containing both DSL code and comments for the LLM’s DSL
understanding and compositionality of LLMs experiments. Section B.2.4 illustrates the prompt
content where both code and comments were provided to the LLM.
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B.2.4 Detailed DSL Promptings. Prompts of DSL Function Codes and Comments

DSL Prompt: Rotate Left State

# rotate_left_state function is a counterclockwise rotation about the given state.
# This function rotates a square grid (NxN) counterclockwise by 90 degrees.

# Parameters:

# - state: A 2D list representing the current grid state.

# Returns:

# - A new 2D list representing the grid after the counterclockwise rotation.

def rotate_left_state(state):

N = len(state)
rotated_state = copy.deepcopy(state)
if N == len(state[0]):

temp_state = copy.deepcopy(state)

for x in range(N):

for y in range(N):
rotated_state[N-1-y][x] = state[x][y]

return rotated_state

DSL Prompt: Rotate Right State

# rotate_right_state function is a clockwise rotation about the given state.
# This function rotates a square grid (NxN) clockwise by 90 degrees.

# Parameters:

# - state: A 2D list representing the current grid state.

# Returns:

# - A new 2D list representing the grid after the clockwise rotation.

def rotate_right_state(state):

N = len(state)
rotated_state = copy.deepcopy(state)
if N == len(state[0]):

for x in range(N):

for y in range(N):
rotated_state[y][N-1-x] = state[x][y]

return rotated_state

DSL Prompt: Vertical Flip

# vertical_flip function is a flip by x-axis about the given state.
# This function flips the grid vertically, swapping the top and bottom rows.
# Parameters:
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# - state: A 2D list representing the current grid state.
# Returns:
# - A new 2D list representing the grid after the vertical flip.

def vertical_flip(state):
temp_state = copy.deepcopy(state)
N = len(state)
M = len(state[0])
for i in range(N):
for j in range(M):
temp_state[N-1-i][j] = state[i][j]
return temp_state

DSL Prompt: Horizontal Flip

# horizontal_flip function is a flip by y-axis about the given state.

# This function flips the grid horizontally, swapping the left and right columns.
# Parameters:

# - state: A 2D list representing the current grid state.

# Returns:

# - A new 2D list representing the grid after the horizontal flip.

def horizontal_flip(state):
N = len(state)
M = len(state[0])
flipped_state = copy.deepcopy(state)
for i in range(N):
for j in range(M // 2):
flipped_state[i][j], flipped_state[i][M-1-j] = state[i][M-1-j], state[i][j]
return flipped_state

DSL Prompt: Move Right

# move_right function moves all pixels in the selected object to the right by one column.
# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel to
move.

# Returns:

# - A new 2D list representing the grid after the object is moved to the right.

def move_right(state, object):
move_state = copy.deepcopy(state)
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new_obj =[]
for x, y in object:
move_state[x][y] =0
for x, y in object:
new_x,new_y=x,y +1
if 0 <= new_x < len(state) and 0 <= new_y < len(state[0]):
move_state[new_x][new_y] = state[x][y]
new_obj.append([new_x, new_y])
return move_state

DSL Prompt: Move Left

# move_left function moves all pixels in the selected object to the left by one column.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel to
move.

# Returns:

# - A new 2D list representing the grid after the object is moved to the left.

def move_left(state, object):
move_state = copy.deepcopy(state)
new_obj =[]
for x, y in object:
move_state[x][y] = 0
for x, y in object:
new_x,new_y=x,y -1
if 0 <= new_x < len(state) and 0 <= new_y < len(state[0]):
move_state[new_x][new_y] = state[x][y]
new_obj.append([new_x, new_y])
return move_state

DSL Prompt: Move Up

# move_up function moves all pixels in the selected object up by one row.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel to
move.

# Returns:

# - A new 2D list representing the grid after the object is moved up.
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def move_up(state, object):
move_state = copy.deepcopy(state)
new_obj =[]
for x, y in object:
move_state[x][y] =0
for x, y in object:
new_x, new_y =x-1,y
if 0 <= new_x < len(state) and 0 <= new_y < len(state[0]):
move_state[new_x][new_y] = state[x][y]
new_obj.append([new_x, new_y])
return move_state

DSL Prompt: Move Down

# move_down function moves all pixels in the selected object down by one row.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel to
move.

# Returns:

# - A new 2D list representing the grid after the object is moved down.

def move_down(state, object):
move_state = copy.deepcopy(state)
new_obj =[]
for x, y in object:
move_state[x][y] =0
for x, y in object:
new_x,new_y=x+1,y
if 0 <= new_x < len(state) and 0 <= new_y < len(state[0]):
move_state[new_x][new_y] = state[x][y]
new_obj.append([new_x, new_y])
return move_state

DSL Prompt: Rotate Right Object

# rotate_right_obj function makes a clockwise rotation about the given object.

# This function rotates the selected object within the grid 90 degrees clockwise around its
center.

# Parameters:

# - state: A 2D list representing the current grid state.
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# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel in
the object.

# Returns:

# - A new 2D list representing the grid after the object is rotated clockwise.

def rotate_right_obj(state, object):
rotate_state = copy.deepcopy(state)
new_obj =[]
max_x = max(x for x,_ in object)
min_x = min(x for x,_ in object)
max_y = max(y for_, y in object)
min_y = min(y for_, y in object)
fixed_x = (max_x + min_x) // 2
fixed_y = (max_y + min_y) // 2

for x, y in object:
rotate_state[x][y] = 0

for x, y in object:
moved_x =y - fixed_y + fixed_x
moved_y = -x + fixed_x + fixed_y
if 0 <= moved_x < len(state) and 0 <= moved_y < len(state[0]):
rotate_state[moved_x][moved_y] = state[x][y]
new_obj.append([moved_x, moved_y])

return rotate_state

DSL Prompt: Rotate Left Object

# rotate_left_obj function makes a counterclockwise rotation about the given object.

# This function rotates the selected object within the grid 90 degrees counterclockwise
around its center.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel in
the object.

# Returns:

# - A new 2D list representing the grid after the object is rotated counterclockwise.

def rotate_left_obj(state, object):
rotate_state = copy.deepcopy(state)
new_obj =[]
max_x = max(x for x,_ in object)
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min_x = min(x for x,_ in object)
max_y = max(y for_, y in object)
min_y = min(y for_, y in object)
fixed_x = (max_x + min_x) // 2
fixed_y = (max_y + min_y) // 2

for x, y in object:
rotate_state[x][y] = 0

for x, y in object:
moved_x = -y + fixed_y + fixed_x
moved_y = x - fixed_x + fixed_y
if 0 <= moved_x < len(state) and 0 <= moved_y < len(state[0]):
rotate_state[moved_x][moved_y] = state[x][y]
new_obj.append([moved_x, moved_y])

return rotate_state

DSL Prompt: Vertical Flip Object

# vertical_flip_obj function makes a vertical flip of the selected object.

# This function flips the selected object within the grid vertically.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel in
the object.

# Returns:

# - A new 2D list representing the grid after the object is flipped vertically.

def vertical_flip_obj(state, object):
flip_state = copy.deepcopy(state)
new_obj =[]
max_x = max(x for x,_ in object)
min_x = min(x for x,_ in object)

for x, y in object:
flip_state[x][y] = 0

for x, y in object:
flip_state[max_x + min_x - x|[y] = state[x][y]
new_obj.append([max_x + min_x - X, y])
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return flip_state

DSL Prompt: Horizontal Flip Object

# horizontal_flip_obj function makes a horizontal flip of the selected object.

# This function flips the selected object within the grid horizontally.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel in
the object.

# Returns:

# - A new 2D list representing the grid after the object is flipped horizontally.

def horizontal_flip_obj(state, object):
flip_state = copy.deepcopy(state)
new_obj =[]
max_y = max(y for_, y in object)
min_y = min(y for_, y in object)

for x, y in object:
flip_state[x][y] = 0

for x, y in object:
flip_state[x][max_y + min_y - y] = state[x][y]
new_obj.append([x, max_y + min_y - y])

return flip_state

DSL Prompt: X Line

# X_line function makes a diagonal X-line in all directions from a given pixel until they
reach the end of the grid.

# Parameters:

# - state: A 2D list representing the current grid state.

# - r: The row index of the starting pixel.

# - c: The column index of the starting pixel.

# - color: The color to be used for the X-line.

# Returns:

# - A new 2D list representing the grid after the X-line is drawn.

def X_line(state, 1, c, color):
X_state = copy.deepcopy(state)
x_move = [-1, 1]
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y_move = [-1, 1]

for i in x_move:
for j in y_move:
moved_x, moved_y =1 +1, ¢ + j
while 0 <= moved_x < len(state) and 0 <= moved_y < len(state[0]):
X_state[moved_x][moved_y] = color
moved_x +=1
moved_y +=j

return X_state

DSL Prompt: Horizontal Line

# horizontal_line function draws a horizontal line between two pixels if they are on the
same row.

# Parameters:

# - state: A 2D list representing the current grid state.

# - r1: The row index of the first pixel.

# - c1: The column index of the first pixel.

# - r2: The row index of the second pixel.

# - c2: The column index of the second pixel.

# - color: The color to be used for the line.

# Returns:

# - A new 2D list representing the grid after the horizontal line is drawn.

def horizontal_line(state, r1, c1, r2, c2, color):
line_state = copy.deepcopy(state)
ifrl ==r2:
if ¢l < ¢2:
if ¢2 < len(state[0]):
for i in range(c1+1, c2):
line_state[r1][i] = color
else:
if ¢1 < len(state[0]):
for i in range(c2+1, c1):
line_state[r1][i] = color
return line_state
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DSL Prompt: Vertical Line

# vertical_line function draws a vertical line between two pixels if they are in the same
column.

# Parameters:

# - state: A 2D list representing the current grid state.

# - r1: The row index of the first pixel.

# - c1: The column index of the first pixel.

# - r2: The row index of the second pixel.

# - c2: The column index of the second pixel.

# - color: The color to be used for the line.

# Returns:

# - A new 2D list representing the grid after the vertical line is drawn.

def vertical_line(state, r1, c1, r2, c2, color):
line_state = copy.deepcopy(state)
if c1 == ¢2:
if rl < r2:
if r2 < len(state):
for i in range(r1+1, r2):
line_state[i][c1] = color
else:
if r1 < len(state):
for i in range(r2+1, r1):
line_state[i][c1] = color
return line_state

DSL Prompt: Diagonal Line

# diagonal_line function draws a diagonal line between two pixels if they form a 45-degree
angle.

# Parameters:

# - state: A 2D list representing the current grid state.

# - r1: The row index of the first pixel.

# - c1: The column index of the first pixel.

# - r2: The row index of the second pixel.

# - c2: The column index of the second pixel.

# - color: The color to be used for the line.

# Returns:

# - A new 2D list representing the grid after the diagonal line is drawn.

def diagonal_line(state, r1, c1, r2, c2, color):
line_state = copy.deepcopy(state)
if abs(r1 - r2) == abs(c1 - c2):
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dr =1ifr2 > rl else -1
dc=1ifc2 >clelse -1
r,c=rl+dr cl+dc
while r !=r2 and ¢ != c2:
line_state[r][c] = color
r+=dr
c+=dc
return line_state

DSL Prompt: Object Color

# obj_color function changes the color of the selected object.

# Parameters:

# - state: A 2D list representing the current grid state.

# - object: A list of lists where each inner list contains the coordinates [x, y] of a pixel in
the object.

# - color: The new color to be applied to the object.

# Returns:

# - A new 2D list representing the grid after the object’s color is changed.

def obj_color(state, object, color):
color_state = copy.deepcopy(state)
for x, y in object:
color_state[x][y] = color
return color_state

DSL Prompt: Pixel Color

# pixel_color function changes the color of the selected pixel.

# Parameters:

# - state: A 2D list representing the current grid state.

# - r: The row index of the pixel to change.

# - c: The column index of the pixel to change.

# - color: The new color to be applied to the pixel.

# Returns:

# - A new 2D list representing the grid after the pixel’s color is changed.

def pixel_color(state, r, c, color):
temp_state = copy.deepcopy(state)
temp_state[r][c] = color
return temp_state
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DSL Prompt: Complete

# complete function returns the current state as the final answer of the quiz.
# Parameters:

# - state: A 2D list representing the current grid state.

# Returns:

# - The same 2D list representing the final grid state.

def complete(state):
return state

B.2.5  Prompt of Compositionality Experiment. Both the LLMs DSL understanding and composition-
ality of LLMs experiments utilized the prompt structure outlined in Section B.2.6. The Introduction
ARC Prompt provides a comprehensive overview of ARC, while the DSL Usage Example Prompt
illustrates DSL application. The DSL prompt, comprising the prompts of DSL function codes and
comments from Section B.2.4 and the DSL usage example prompt, offers a comprehensive DSL
explanation. The task prompt includes demonstration examples, test input, object information
(coordinates of objects obtained through PnP in dictionary format), and output format guidelines.
In the case of the LLMs DSL understanding prompt, unlike the task prompt, the DSLs path for the
task is provided. The CoT prompt included the introduction ARC prompt and DSL prompt. In the
case of the LLMs DSL understanding experiment, the LLMs DSL understanding prompt was used,
while in the case of the compositionality of LLMs experiment, the task prompt was used. In the
compositionality experiments, the CoT prompt was utilized.

B.2.6 Detailed Promptings. Composition of prompt contents used in the compositionality experi-
ments.

Introduction ARC Prompt

Do you know ARC problem?

ARC is a quiz, and if we can solve this problem, we can understand and utilize several
173 . "o« "o« "o« "o« "o« "
concepts such as “object”, “count”, “color", “move", “row", “column”, etc.

ARC problems give you some examples to understand these patterns. You can understand
the pattern below with several examples and then apply the quiz’s input to get the correct
output.

DSL Usage Example Prompt

In this example grid,
[0,0,0,0,0,0,0,0,0, 0],
0,0,0,0,0,0,0,5,5, 0],
0,55,0,0,0,0,5,5, 0],
0,0,5,5,0,0,0,0,0, 0],
0,0,0,0,0,0,0,0,0, 0],
0,0,0,0,0,0,0,0,0, 5],

(
(
[
[
[
(
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[0,0,0,0,0,5,5,0,0,5],
[0,5,0,0,0,0,0,0,0, 5],
[0,5,0,0,5,0,0,0,0, 0],
[0,0,0,5,5,0,0,0,0,0]]

there are 6 objects

Object1: [[1, 7], [1, 8], [2, 7], [2, 8]]
Object2: [[2, 1], [2, 2], [3, 2], [3, 3]]
Object3: [[5, 9], [6, 9], [7, 9]]
Object4: [[6, 5], [6, 6]]

Object5: [[7, 1], [8, 1]]

Objecté: [[8, 4], [9, 31, [9, 4]]

If you apply “rotate_right_obj(state, object2)", the result becomes
[[0,0,0,0,0,0,0,0,0, 0],
[0,0,5,0,0,0,0,5,5, 0],
[0,5,5,0,0,0,0,5,5, 0],
[0,5,0,0,0,0,0,0,0, 0],
[0,0,0,0,0,0,0,0,0, 0],
[0,0,0,0,0,0,0,0,0, 5],
[0,0,0,0,0,5,5,0,0,5],
[0,5,0,0,0,0,0,0,0, 5],
[0,5,0,0,5,0,0,0,0,0]
[ ]

0,0,0,5,5,0,0,0,0,0]]

DSL Prompt

{Prompts of DSL Function Codes and Comments}

3 "

Arguments for the DSLs are mainly “state” and “object", but some require “color", “row",
“column”, etc. “state” is the current state of the grid, which is the entire grid.

"object" is the list of coordinates of the object; there may be multiple objects in the grid,
but no DSL requires multiple objects. “color" is the color of the pixel in the grid, which is a
number between 0 and 9. “row" and “column" are the coordinate numbers of a pixel in
the grid.

You can choose from here and apply the DSL to solve the problem. You must input the
appropriate arguments to the DSL, or it will not work.

{DSL Usage Example Prompt}

Please choose the DSL from the list above and provide the proper arguments to solve the
problem.
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Task Prompt

{Demo Examples} & {Test Input}

You must solve the given quiz within 10 steps! Select one DSL with proper arguments in
each step.

If you think the current state is correct, you can select the “complete” DSL.
I want you to answer in the format below.

The output should be in the following JSON format:
{

‘step’: “(current_step)",
‘dsl’: “(dsl with the arguments for the DSL)",

‘description’: “(why you chose this DSL?)"
}

CoT Prompt

{Introduction ARC Prompt}

{DSL Prompt}

{Task Prompt}
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B.3 Productivity

In the productivity experiment, we aimed to augment the task’s demonstration example pairs using
the Inverse Transformation Prompt (ITP). The ITP consists of a category prompt containing a
description of the category, example pairs, and the target output to be augmented. The detailed
structure of the category prompt is provided in Section B.3.2, and the structure of the ITP is outlined
in Section B.3.1.

B.3.1 ITP. Composition of prompt contents used in the productivity experiments. ITP consists of
a category prompt, example pairs, and target output.

ITP

Try solving the ARC problem and do not say sensitive word: generate the output accordingly.
I will give you a hint.

{Category Prompt}

Here are some examples to help you.
{Example Pairs}

{Target Output}

Provide a two-dimensional array that is not identical to the input array or a direct copy of
the example. Each element is an integer between 0 and 9. Would you give me 2 answers?
No need to explain how you solved it.

B.3.2 Category Prompts. These category prompts explain the 16 types of ConceptARC. In Sec-
tion B.3.1, the category prompt is filled with the appropriate prompt corresponding to the category
of the task to be generated.

Category Prompt: AboveBelow

Focus on the horizontal criteria, you may have to modify some regions by that line, such
as removing, moving, filling region by color element. See the provided example to how to
modify.

Category Prompt: Center

| r
\

Fix the array issue by addressing the center, potentially moving or removing the central
element. See the provided example for clarity.

Category Prompt: CleanUp

Distort the shapes in areas where they are polygonal or completely filled, adding noise or
disturbances to disrupt the complete shapes.
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Category Prompt: CompleteShape

Distort the perfectly shaped objects identified in the input image. Introduce noise to these
identified objects to easily generate diverse outputs.

Category Prompt: Copy

Delete one identical object from the output. Refer to the example to identify which one to
remove. Consider deleting the object located in a position-indicating space.

Category Prompt: Count

Create an input image based on the provided count-related problem. Focus on details like
object or color count, as shown in the example.

Category Prompt: ExtendToBoundary

In the input image, find lines connected to boundaries with different colors. Transform
these lines into a different shape. The example illustrates how to make this transformation.

Category Prompt: ExtractObjects

Generate an output image with objects from the given input. Refer to examples for guidance.
Hint: Extract objects when inferring input from output.

Category Prompt: FilledNotFilled

When inferring the input from the output, focus on situations where the inner part of an
object contains empty space or another object. Examples provide guidance for creating the
output image.

Category Prompt: HorizontalVertical

Focus on horizontal and vertical relations, representing them with colors or preserving one
direction while eliminating the other. Examples illustrate the approach.

Category Prompt: InsideOutside

Address the inside-outside relationship, either by selecting items inside or outside in the
input or determining quantities. Use the boundary as a reference. Examples offer guidance.
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Category Prompt: MoveToBoundary

Objects in the input may be shifted to one side, and in the output, they are displaced either
horizontally or vertically. Infer the direction from examples and choose the displacement
freely.

Category Prompt: Order

This is about randomly rearranging initially ordered objects while representing their original
positions through a specific rule. Examine the examples to understand how to achieve this.

Category Prompt: SameDifferent

You’ll notice that only specific-shaped objects are extracted in the input image. Create
additional objects in the zero-represented space. Examples provide guidance on how to
proceed.

Category Prompt: TopBottom2D

Objects are in a 2D space. Check changes in the top and bottom. The input may have shifted
or require removing top/bottom indicators. Look at examples for specifics.
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