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ABSTRACT
Intentional manipulation of invoices that lead to undervaluation of
trade goods is the most common type of customs fraud to avoid ad
valorem duties and taxes. To secure government revenue without
interrupting legitimate trade flows, customs administrations around
the world strive to develop ways to detect illicit trades. This paper
proposes DATE, a model of Dual-task Attentive Tree-aware Em-
bedding, to classify and rank illegal trade flows that contribute the
most to the overall customs revenue when caught. The strength of
DATE comes from combining a tree-based model for interpretability
and transaction-level embeddings with dual attention mechanisms.
To accurately identify illicit transactions and predict tax revenue,
DATE learns simultaneously from illicitness and surtax of each
transaction. With a five-year amount of customs import data with
a test illicit ratio of 2.24%, DATE shows a remarkable precision of
92.7% on illegal cases and a recall of 49.3% on revenue after inspect-
ing only 1% of all trade flows. We also discuss issues on deploying
DATE in Nigeria Customs Service, in collaboration with the World
Customs Organization.

CCS CONCEPTS
• Social and professional topics → Taxation; • Applied com-
puting → E-government.
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Table 1: Types of customs fraud and the scope of this research.

Scope Fraud Illicit motives

✓

Undervaluation
of trade goods

To avoid ad-valorem customs duty, or con-
ceal illicit financial flows from exporters

Misclassification
of HS code

To get a lower tariff rate applied or trade
prohibited goods by avoiding restriction

Manipulation
of origin country

To get a preferential tariff rate under a
free trade agreement

✗

Smuggling
without declaration

To trade prohibited goods by avoiding re-
striction and custom duties

Overvaluation
of trade goods

To disguise illicit financial flows as legiti-
mate trade payment from importers
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1 INTRODUCTION
Customs are government authorities responsible for controlling
the flows of goods and passengers across borders and collecting
customs duties and taxes from traders. According to the World
Customs Organization (WCO)1, customs administrations cleared
$19.7 trillion worth of imports, 1.4 billion passengers, and collected
30% of tax revenue globally in 2018 alone. Given the astronomical
volume of cross-border flows, how to control less but better is the
main task of customs administrations. On the other hand, traders
may be tempted to manipulate and omit some declaration details to
avoid customs duties, taxes, and regulations. Table 1 summarizes
the types of customs fraud with the corresponding illicit motives.

Undervaluation is the most common type of customs fraud,
where importers or exporters declare the value of trade goods at
lower prices than actual ones, mainly to avoid ad valorem customs
duties and taxes. However, in a broad definition, it encompasses
misclassification in HS codes — a standardized international Har-
monized System to classify globally traded products — and ma-
nipulation of countries of origin with a motive to avoid customs
duties and taxes. An example would be to declare a television (HS
852859, 8% duty) as a PC monitor (HS 852852, 0% duty). This paper
uses a broad definition of undervaluation. There are other kinds
of customs tax fraud, including smuggled goods that try to avoid
invoicing altogether.
1http://www.wcoomd.org/
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Fraud detection in trades, trade-related financial transactions,
and cross-border passengers are the pillars of customs adminis-
tration. Some customs administrations have successfully adopted
machine learningmodels in their fraud detection systems, andmany
administrations are planning or requesting international support.
Recently, theWCO has started looking into the potential of machine
learning and data mining methods for fraud detection [8, 13, 32].
Nonetheless, the usage of machine learning in the field of customs
has been limited, especially for developing economies, and there
remain several challenges, such as interpretability, availability of
historical data, ever-changing patterns of fraud, availability of la-
beled data, imbalanced data, and privacy concerns.

Building a customs fraud detection model needs to address the
following considerations. First, interpretability is an essential re-
quirement for customs administrations. In practice, inspecting an
import involves reviewing tens of documents, finding clues of fraud
out of hundreds of packages in a warehouse, and even pacifying
angry traders who suffer from additional cost and delays due to the
inspection. If our model fails in informing inspectors of any reasons
for its targeting, theymay resist themodel’s predictions. Second, the
identifiers of traders and trade goods are essential features in detect-
ing customs fraud. In our preliminary result with a random forest
model, non-compliance records of importers and HS codes were the
most critical variables. DATE was designed to fully utilize the two
variables, overcoming their extremely high cardinality (165 thou-
sands of importers and six thousands of HS codes). Lastly, we expect
our model to deliver better performance than the current and tra-
ditional machine learning approaches for customs fraud detection.

To incorporate the points mentioned above, we propose Dual
Attentive Tree-aware Embedding (DATE) for customs fraud detec-
tion. Given an import transaction, along with the corresponding
trader and trade goods, our primary goal is to predict its illicitness,
a binary label indicating whether it is illicit or not. Since the identi-
fication of trade frauds would lead to an increase in the customs
tax revenue [13], we also aim at predicting the raised revenue as
the secondary goal. The main idea of DATE is three-fold. First, we
pre-train a tree-based model to identify the most significant combi-
nations of original features, termed cross features. Cross features
not only provide the effective representation capability to deal with
structured data, but also allow our model to be equipped with inter-
pretability. Second, by learning the embeddings of cross features,
we devise a dual attentive mechanism to generate the representa-
tion of a transaction. We exploit multi-head self-attention to learn
the interactions between cross features, and utilize an attention
network to encode how the trader and trade goods (HS code) are
correlated with cross features. Third, we devise a dual-task learning
technique that predicts the illicit probability and jointly maximizes
the amount of raised customs tax for customs authorities. The dual-
task learning makes the classification task more effective and helps
customs to identify the most valuable illicit transactions.

Results obtained with our dataset show that around 90% of the
frauds can be detected, and 89% of the total additional tax revenue
can be collected by inspection of only the top 10% suspicious trans-
actions identified by the proposed DATE model. Automating the
inspection process offers improved tax fraud detection, increased
operational efficiency, and reduced human resources required to

perform the inspections. Better tax fraud detection enhances rev-
enue inflow as well as the country’s trade competitiveness.

2 RELATEDWORK
Fraud detection is a general task of interest that is relevant to many
industries. With the advent of data mining and machine learning,
numerous advances have beenmade, such as the decision-tree based
approaches [1–3, 29]. When it comes to customs administrations
(i.e., the target domain of this research), most tax authorities until
today are using rule-based methods [17]. Rule-based systems are
interpretable and straightforward, but are brittle against any new
behaviors and changes, subjective to expert knowledge, and are
cumbersome to maintain [16, 21]. Machine learning-based systems
can overcome such limitations.

As far as customs fraud detection is concerned, the published
literature is limited primarily due to the proprietary nature of the
task. There, however, exist several efforts that can be summarized as
supervised, unsupervised, and semi-supervised learning techniques.
Sometimes an ensemble of these techniques is deployed for better
performance. For example, the Belgian customs have tested an
ensemble method of a support vector machine-based learner in a
confidence-rated boosting algorithm [26]. The Columbia customs
have demonstrated the use of unsupervised spectral clustering
in detecting tax fraud with limited labels [10]. Most recently, an
ensemble of tree-based approaches, support vector machine, the
neural network has been tested on customs data warehouse in
Indonesia [6].

Another research sheds light on customs fraud in international
shipping records in the Netherlands [25]. In this work, a model was
built based on the Bayesian network and neural networks that com-
pare the presence of goods on the cargo list of shipments against the
accompanying documentation of a shipment, to determine whether
document fraud is perpetrated. There are other studies that uti-
lize approaches like the Benford’s Law to detect fraud in customs
audits [22]. Another research employed a deep learning model to
segregate high risk and low-risk consignment on randomly selected
200,000 data from Nepal Customs of the year 2017 [23].

Some countries have worked to develop their fraud detection
systems. The Korea Customs Service developed an electronic cus-
toms clearance system Uni-pass2 that recently evolved to deploy
AI-based risk management module named IRM-pass. New Zealand
established Joint Border Analytics (JBA) in 2016 to leverage data
analysis and to mine to gain new insights into border and customs
risks. While their methodology is not public, JBA uses data from
different sources such as cargo, passenger, and mail streams as well
as open-source data. JBA takes to looking at a range of customs
risks and issues, including undervaluation, drug importation, and
even the Darknet drugs markets.3 Brazil’s federal revenue author-
ity developed a sophisticated selection system called SISAM [11],
which reports the error rate for diverse fraud scenarios and out-
puts an assessment report to assist tax auditors. The algorithm for
targeting system is proprietary and leverages recent advances from
computer vision and natural language processing. SISAM is known
to be developed from hierarchical pattern Bayes [12].

2https://tinyurl.com/rc4vfh4
3https://tinyurl.com/t5tmq8n



Table 2: Overview of the transaction-level import data, in which the description and example of each variable are provided.

Type Variable Description Example

Features

sgd.id An individual numeric identifier for Single Goods Declaration (SGD). SGD347276
sgd.date The year, month and day on which the transaction occurred. 13-11-28
importer.id An individual identifier by importer based on the tax identifier number (TIN) system. IMP364856
declarant.id An individual identification number issued by Customs to brokers. DEC795367
country Three-digit country ISO code corresponding to transaction. USA
office.id The customs office where the transaction was processed. OFFICE91

tariff.code A 10-digit code indicating the applicable tariff of the item based on the harmonised system (HS). 8703232926
quantity The specified number of items. 1
gross.weight The physical weight of the goods. 150kg

fob.value The value of the transaction excluding, insurance and freight costs. $350
cif.value The value of the transaction including the insurance and freight costs. $400
total.taxes Tariffs calculated by initial declaration. $50

Prediction Target illicit Binary target variable that indicates whether the object has fraud. 1
revenue Amount of tariff raised after the inspection, only available on some illicit cases. $20

Most countries that do not own fraud-detection systems use
ASYCUDA, a computerized customs management system designed
by the United Nations. Currently, more than 90 countries use this
system worldwide.4 ASYCUDA facilitates the inclusion of simple
rule-based methodologies for fraud detection, which our algorithm
aims to builds upon. Some fraud detection methodologies are ap-
plicable to ASYCUDA. For example, traditional fraud detection
techniques, like mirror data analysis, can be performed to identify
any discrepancy between the import and export sides of a trade [9].
However, it is rare to have transaction-level data for trading sides,
and it is not straightforward to establish the exact type of goods
and its retail price from import declarations.

3 PROBLEM SETTINGS
3.1 Dataset
This paper employed transaction-level import data of Nigeria, a
partner country of WCO. A total of 1,932,151 import trade flows
from 2013 to 2017 comprise the data. Table 2 lists the key data
fields, where some fields such as trader ID had been anonymized.
The trade goods are categorized by tariff.code that combines the
six-digit HS code used worldwide and the four-digit code granted
by the country. The bottom two rows are target variables to predict,
which are generated after the inspection result.

Figure 1 depicts the daily transaction volume, daily illicit rate, and
daily revenue of the data we have utilized. It is worth noting that due
to the customs rules of Nigeria, every custom is subjected to detailed
inspection (i.e., currently achieving a near 100% inspection rate).
Therefore, illicit and legitimate transactions are accurately labeled
in this complete log, except for the case of smuggling. Nonetheless
we mention that our dataset includes only the logs of single goods
declarations and does not include multi goods declarations. Hence,
the transaction trend is not representative of the country’s entire
import volume. The overall illicit rate is 3.83%, but varies each year
slightly. The daily tax revenue from detecting illicit transactions
also varies throughout the year. According to the data, frequent

4https://asycuda.org/en/user-countries/
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Figure 1: Major statistics of the dataset.

importers commit fewer frauds than those importers with fewer
transactions, as identified in the bottom right figure. Similarly, we
observe that certain HS codes are used more frequently in illicit
transactions. Based on these observations, we later treat importer
ID and HS code as part of a key signal in fraud detection.

We quantify the risk indicators of importers, declarants, HS
code, and countries of origin in the model. The risk indicators
are calculated from their non-compliance records. For instance,
importers are ranked by the specific number of fraudulent im-
ports divided by their corresponding total transaction volume. The
importers, whose ranks are above the 90th percentile, were re-
garded as high-risk importers, and their risk indicators were given
a value of 1; otherwise, 0. Various nonlinear relationships such as
unit.value (=cif.value/quantity), value/kg (=cif.value/gross.weight), tax.ratio
(=total.taxes/cif.value), unit.tax (=total.taxes/quantity), as well as face.ratio
(=fob.value/cif.value) were added. We also add three temporal features,
Day of Year, Week of Year, and Month of Year of the imported goods.

3.2 Customs Fraud Detection Problem
The customs administration aims to select which import trade flows
inspectors should prioritize and manually verify. We formulate the
customs fraud detection problem as follows.



Problem: Given an import trade flow 𝑡 , along with its importer𝑢 and
HS code 𝑐 of the goods, the goal is to predict both the fraud score 𝑦𝑐𝑙𝑠

and the raised revenue 𝑦𝑟𝑒𝑣 obtainable by inspecting transaction 𝑡 .

By using two predicted values,𝑦𝑐𝑙𝑠 and𝑦𝑟𝑒𝑣 from all trade flows5
𝑇 = {𝑡1, . . . , 𝑡𝑁 }, customs administration can select fraudulent
transactions 𝑇𝐹 ⊂ 𝑇 according to their criteria. Anecdotal reports
show that customs offices in developed economies are capable of
no more than 5% inspection rate, due to astronomical trade volume.
In light of this limitation, developing algorithms that detect fraud
with minimal inspection is critical. In the remainder of this paper,
we will describe the proposed DATE model that predicts 𝑦𝑐𝑙𝑠 and
𝑦𝑟𝑒𝑣 of each import traffic flow 𝑡 and demonstrate its performance.

4 OUR MODEL: DATE
The Dual-task Attentive Tree-aware Embedding (DATE) model con-
sists of three stages. The first stage pre-trains a tree-based classifier
to generate cross features of each transaction. The second stage is a
dual attentive mechanism that learns both the interactions among
cross features and the interactions among importers, HS codes, and
cross features. The third stage is the dual-task learning by jointly
optimizing illicitness classification and revenue prediction. The
overall architecture is depicted in Figure 2.

4.1 Tree-based Cross Feature Embeddings
The strength of tree-based methods lies at its effectiveness and
interpretability [28]. A decision tree could be seen as an effective
algorithm to express high-order cross features from the original
features. Suppose we have a decision tree 𝑇 = {𝑉 , 𝐸}, where 𝑉 and
𝐸 are sets of nodes and edges, respectively. The node-set 𝑉 can
be divided into three subsets, the root node {𝑣𝑅}, internal nodes
𝑉𝐼 , and leaf nodes 𝑉𝐿 , 𝑉 = {𝑣𝑅} ∪ 𝑉𝐼 ∪ 𝑉𝐿 . Each internal node
𝑣𝐼 ∈ 𝑉𝐼 splits a feature in the decisive space. A path that connects
𝑣𝑅 and any node in 𝑣𝐿 ∈ 𝑉𝐿 represents a decision rule or a decision
path. A feature vector x ∈ R𝑘 (𝑘 is the dimension) is assigned to a
leaf node 𝑣𝐿 , which represents a decision rule. A rule can be the
path from root to the leaf, e.g., “gross.weight > 100kg ∧ quantity
> 5” as it passes two internal nodes. We call each decision path
instance as a cross feature that combines multiple feature ranges
together. A single tree is not expressive to cover all of the complex
patterns, and hence we consider to build a forest instead. We use
Gradient Boosting Decision Tree (GBDT) that has been proved be
effective in many classification tasks [4, 5]. GBDT is an ensemble
learning method that boosts the prediction by growing decision
trees sequentially. The prediction of GBDT is made by aggregating
the results of trees:

𝑦𝐺𝐵𝐷𝑇 (x) =
𝜏∑
𝑡=1

𝜂𝑦𝑡𝐷𝑇 (x), (1)

where 𝜏 is the number of trees, and 𝑦𝑡
𝐷𝑇

is the predicted value by
𝑡-th decision tree. The shrinkage parameter 0 < 𝜂 < 1 controls
the learning rate of the procedure. Inspired by existing tree-based
models [14, 28], we use the pre-trained GBDTs to obtain cross
features from the feature vector of a transaction.

5Terms in each of sets {“trade flow”, “transaction”}, {“HS code”, “item”, “goods”}, and
{“fraud”, “illicitness”} are interchangeably used throughout this paper.
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Figure 2: The architecture of our DATE model.

Assume that we are given 𝜏 trees, and let 𝑁𝐿 be the total number
of leaves in the forest. When an input vector x is given, the GBDT
decides which leaf node should correspond to the input. Each ac-
tivated leaf in a tree is treated as a cross feature, F𝑖 , as a one-hot
encoding vector representing a leaf node in the decision tree. By
concatenating them together, a multi-hot vector p ∈ R𝑁𝐿 can be
produced, in which elements of value 1 indicate activated leaves
and 0, non-activated ones in p.

To further encode high-level semantic feature, we project each
cross feature F𝑖 into a learnable dense embedding vector s𝑖 ∈ R𝑑 ,
where𝑑 is the dimensionality. Given amulti-hot cross feature vector
p obtained from GBDT, we collect those embedding vectors which
are corresponding 𝑝𝑖 ≠ 0 (𝑝𝑖 ∈ p), and construct an embedding
matrix S ∈ R𝜏×𝑑 since we have 𝜏 trees, given by:

S = 𝜑
( [
𝑝1s1, 𝑝2s2, ..., 𝑝𝑁𝐿

s𝑁𝐿

] )
,∀𝑝𝑖 ≠ 0 and 𝑝𝑖 ∈ p, (2)

where 𝜑 (M) is an operation that removes all zero row vectors from
a matrix M. The derived matrix S depicts all latent representations
of non-zero cross features, and will be used for prediction.

The benefit of learning a dense embedding s𝑖 of each cross feature
F𝑖 is two-fold. First, it canmodel the underlying correlation between
different leaves and map similar cross features into near-by points
in the embedding space. Second, since the embedding matrix S is
learnable during training, it allows us to incorporate additional
information, such as importer and item id. In other words, adopting
a learnable vector, instead of a static vector provides our model
some flexibility of customization because of different countries’
customs record a variety of information.

4.2 Dual Attentive Mechanism
Wepresent a dual attentionmechanism, leaf-wise self-attention, and
attention network. The former is to model the correlation between
cross features from different views. The latter is to learn how each
cross feature contributes to the importer and the HS code. Then we
fuse embeddings to have the representation of each transaction.

4.2.1 Leaf-wise Self-attention. While some cross features concern
about the price and quantity of items and some emphasize on
whether an importer is risky, their interactions can further reveal
the potential illicit behaviors. Given the embedding matrix S of
cross features (leaf nodes), we aim to learn how the interactions be-
tween cross features affect the prediction. A leaf-wise self-attention



mechanism is developed to model the interactions between leaf em-
beddings. Let F𝑄 , F𝐾 , and F𝑉 denote matrices packed from vectors
of queries, keys, and values in self-attention [27], respectively. We
first define the scaled dot product attention (SDPA):

𝑆𝐷𝑃𝐴(F𝑄 , F𝐾 , F𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
F𝐾 (F𝑄 )⊤

√
𝑑

F𝑉
)
, (3)

in which dot product is used to capture the similarity between
vectors. Instead of performing a single attention function with 𝑑𝑘 -
dimensional queries, keys, and values, we project queries, keys,
and values 𝑛ℎ times with different learned linear projections to
𝑑𝑘 , 𝑑𝑘 , and 𝑑𝑣 dimensions, respectively. On each of the projected
queries, keys, and values, we can perform the attention mechanism
in parallel, yielding to 𝑑𝑣-dimensional output values. To achieve
the goal of modeling different aspects of interactions between leaf
(i.e., cross feature) embeddings, we utilize multi-head (MH) self-
attention:

𝑀𝐻 (F𝑄 , F𝐾 , F𝑉 ) = Concat(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑𝑛ℎ )W𝑂 , (4)

where ℎ𝑒𝑎𝑑𝑖 = 𝑆𝐷𝑃𝐴(F𝑄W𝑄

𝑖
, F𝐾W𝐾

𝑖
, F𝑉W𝑉

𝑖
), W𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
∈

R𝑑×𝑑𝑘 and W𝑂 ∈ R𝑛ℎ𝑑𝑣×𝑑 are learnable weights, and 𝑛ℎ is the
number of heads. That said, dense layers (i.e., W𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
) are

used to project the queries, keys, and values into their vector spaces.
Then we apply self-attention based on the leaf embedding matrix S.
Since the queries, keys, and values are all equal to the leaf embed-
ding matrix, i.e., F𝑄 = F𝐾 = F𝑉 = S, we can produce the multi-head
attention-aware cross feature embedding matrix S̃ = 𝑀𝐻 (S, S, S),
which is used to construct the attention network below.

4.2.2 Attention Network. We learn the contributing weights of
cross features derived from different trees to exploit the interactions
of cross features for intelligent prediction. Based on recent advances
of attention mechanism [27, 28], we propose an attention network
that considers the importer ID and the item identifier (i.e., HS code)
to model the tri-interactions among cross features, importers, and
items regarding a given transaction. Given a pair (𝑢, 𝑐) of importer
𝑢 and an HS code 𝑐 , along with the cross feature embeddings S̃, the
aim is to generate the attention weight 𝑎𝑢𝑐𝑖 . The attention weights
can reflect which cross feature F𝑖 is more significant in determining
illicit behaviors concerning a given importer 𝑢 and item 𝑐:

𝑎𝑢𝑐𝑖 = h⊤𝜙 (W[p𝑢 ⊙ q𝑐 , s𝑖 ] + b),

𝛼𝑢𝑐𝑖 =
exp(𝑎𝑢𝑐𝑖 )∑
exp(𝑎𝑢𝑐𝑖 )

,
(5)

where W ∈ R𝑑×2𝑑 and b ∈ R𝑑 are the trainable weight matrix
and the bias vector, vectors p𝑢 ∈ R𝑑 and q𝑐 ∈ R𝑑 represent the
embeddings of importer ID 𝑢 and HS code 𝑐 , 𝜙 is ReLU activation
function, and s𝑖 ∈ S̃ is the embedding vector of cross feature F𝑖 ,
respectively. The hidden vector h ∈ R𝑑 projects the hidden vec-
tor into a scalar weight for output. We set p𝑢 = 0 and q𝑐 = 0
(i.e., zero vectors) upon encountering any unseen importers and
HS codes. We use element-wise product p𝑢 ⊙ q𝑐 to capture the
co-occurrence of importer and item, and concatenate it with the
cross feature embedding s𝑖 to learn attentive weights. We use the
attentive weights to aggregate cross features, and generate the final
representation e(𝑢, 𝑐, S̃) of a transaction declared by importer 𝑢 on
item 𝑐 via: e(𝑢, 𝑐, S̃) = ∑𝑁𝐿

𝑖=1 𝛼𝑢𝑐𝑖s𝑖 , where si ∈ S̃.

4.2.3 Embedding Fusion. Sincewhether a transaction is illicit highly
depends on who is the importer and what is the item inside, we
combine the obtained transaction representation e(𝑢, 𝑐, S̃) with the
importer embedding p𝑢 and the item embedding q𝑐 for prediction.
By concatenating such three vectors, along with a hidden layer, we
can generate a fused vector e𝑓 (𝑢, 𝑐, S̃), given by

e𝑓 (𝑢, 𝑐, S̃) = 𝜙 (
[
p𝑢 , q𝑐 , e(𝑢, 𝑐, S̃)

]
W𝑓 ), (6)

where𝑊𝑓 ∈ R3𝑑×𝑑 is the learnable weight matrix, and we use ReLU
to be the activation function 𝜙 .

In customs operations, it is common to find unseen importers
and new items. As we initialize the embeddings of unseen ones to be
zero vectors, we will be able to deal with such input. By projecting
unseen ones into the same space shared with cross features, their
embeddings are encoded with useful clues on illicitness.

4.3 Dual-Task Learning
Identifying illicit transactions naturally leads to an increase in
customs tax revenue [13]. However, the amount of increased taxes
can be determined only when the transaction is caught illicit. This
indicates that if we could estimate the amount of raised tax precisely,
it has the potential to benefit the prediction of illicit classification.
Multi-task learning techniques have been used to train a model
that optimizes multiple objectives simultaneously [20, 24].

We propose a dual-task learning method to use the transaction
information (i.e., e𝑓 ) for both tasks of binary illicit classification
and increased revenue prediction. Given the transaction feature e𝑓 ,
we introduce the task-specific layer:

𝑦𝑐𝑙𝑠 (𝑢, 𝑐, S̃) = 𝜎

(
r⊤1 e𝑓 (𝑢, 𝑐, S̃) + b1

)
,

𝑦𝑟𝑒𝑣 (𝑢, 𝑐, S̃) = r⊤2 e𝑓 (𝑢, 𝑐, S̃) + b2,
(7)

where r1, r2 ∈ R𝑑 denotes the hidden vectors of task-specific
layers that project e𝑓 into the prediction tasks of binary illicit-
ness and raised revenue, respectively. 𝜎 is the sigmoid function.
𝑦𝑐𝑙𝑠 (𝑢, 𝑐, S̃) is the predicted probability of a transaction being il-
licit, and 𝑦𝑟𝑒𝑣 (𝑢, 𝑐, S̃) is the predicted raised revenue value of a
transaction. The final objective function L𝐷𝐴𝑇𝐸 is given by:

L𝐷𝐴𝑇𝐸 = L𝑐𝑙𝑠 + 𝛼L𝑟𝑒𝑣 + 𝜆∥Θ∥2, (8)

where Θ denotes all learnable model parameters, L𝑐𝑙𝑠 is the cross-
entropy loss for binary illicitness classification, L𝑟𝑒𝑣 is the mean-
square loss for raised revenue prediction, given by:

L𝑐𝑙𝑠 = −
∑
𝑖

𝑦𝑐𝑙𝑠𝑖 log(𝑦𝑐𝑙𝑠𝑖 (𝑢𝑖 , 𝑐𝑖 , S̃𝑖 )) + (1 − 𝑦𝑐𝑙𝑠𝑖 ) log(1 − 𝑦𝑐𝑙𝑠𝑖 (𝑢𝑖 , 𝑐𝑖 , S̃𝑖 )),

L𝑟𝑒𝑣 =
1
𝑛

∑
𝑖

(
𝑦𝑟𝑒𝑣𝑖 − 𝑦𝑟𝑒𝑣𝑖 (𝑢𝑖 , 𝑐𝑖 , S̃𝑖 )

)2
,

(9)
where 𝑦𝑐𝑙𝑠

𝑖
and 𝑦𝑟𝑒𝑣

𝑖
are the ground-truth illicitness class and raised

revenue of transactions 𝑡𝑖 , respectively, 𝜆 is the regularization hy-
perparameter to prevent overfitting, and 𝑛 is the number of training
samples. The hyperparameter 𝛼 is used to balance the contributions
between tasks. We use mini-batch gradient descent to optimize the
objective function L𝐷𝐴𝑇𝐸 , along with Ranger, a synergistic opti-
mizer combining Rectified Adam [19] and LookAhead [31] based on
a dynamic rectifier to adjust the adaptive momentum of Adam [15].



Table 3: Performance comparison between baselines and the proposed DATE.

𝑛 = 1% (Selecting top 1%) 𝑛 = 2% 𝑛 = 5% 𝑛 = 10% Overall

Model Pre. Rec. Rev. Pre. Rec. Rev. Pre. Rec. Rev. Pre. Rec. Rev. AUC F1

Price 2.75% 1.23% 15.17% 2.23% 1.99% 20.64% 2.06% 4.60% 34.95% 2.30% 10.28% 50.98% 67.57% 7.81%
Importer 11.43% 5.10% 4.36% 9.41% 8.39% 7.56% 6.47% 14.43% 13.18% 5.22% 23.31% 30.31% 59.20% 9.10%
IForest 5.61% 2.50% 14.30% 6.19% 5.52% 23.14% 5.66% 12.62% 40.62% 5.12% 22.85% 54.14% 66.89% 5.28%
GBDT 90.01% 40.15% 24.59% 66.16% 59.04% 38.89% 32.19% 71.80% 57.20% 17.58% 78.42% 66.86% 93.38% 63.69%
GBDT+LR 90.95% 40.40% 27.18% 72.94% 65.09% 44.22% 35.02% 78.11% 63.77% 18.72% 83.54% 73.77% 94.82% 68.76%
TEM 88.72% 39.59% 39.48% 74.70% 66.43% 58.48% 37.39% 83.41% 78.58% 19.91% 88.54% 85.02% 96.52% 70.55%

DATECLS 92.66% 41.33% 44.97% 80.79% 72.05% 67.14% 38.77% 86.49% 84.35% 20.24% 90.29% 89.03% 96.79% 75.32%
DATEREV 82.25% 36.63% 49.29% 79.93% 71.22% 68.48% 38.74% 86.41% 84.57% 20.11% 89.74% 89.2% 95.66% 75.23%

5 EVALUATION
5.1 Evaluation Settings
5.1.1 Data Splitting. We split our data into training, validation and
testing sets on temporal basis. The data from the last year (Y2017) is
used as a testing set. The last month worth of data from the previous
four years (Y2013–2016) is held out as a validation set. Accordingly,
the size of training, validation, testing set becomes 1,635,157 (84.4%),
25,948 (1.3%), 276,440 (14.3%), and the corresponding illicit ratios
are 3.94%, 2.51%, and 2.24%, respectively.

5.1.2 Evaluation Metrics. To evaluate model performance, we used
five metrics. Given that customs administration inspect a limited
quantity of goods, four inspection rate values are used — 1%, 2%,
5%, 10% — to measure precision, recall, and recall on revenue [11].
In practice, an adequate inspection rate varies according to customs
policy and with the context. Besides, we also report AUC and F1-
score to evaluate the overall model performance. In the following
definitions, top n% refers to the top n% most suspicious transactions
suggested by each algorithm.
• Precision@n%: This metric explains how many transactions
are illicit, among the top n% of transactions.

• Recall@n%: This metric represents how many inspected trans-
actions (i.e., the n% of flows chosen) have been successfully
screened out of the total illicit volume.

• Revenue@n%: It is the total revenue in top n% transactions
identified by a model divided by the total revenue among all
transactions. This metric explains how much customs duties can
be generated from top n% of transactions, as compared to the
revenue generated by inspecting the entire transactions.

• AUC: This is a scale and the threshold invariant metric ranges
from 0 to 1. It is used to evaluate the outcome of the predictive
algorithm for the entire data.

• F1-score: This is a measure of a test’s accuracy among six dif-
ferent inspection rates. In detail, we report the best F1-score
calculated by adjusting the illicit threshold from 0.1 to 0.6 for
every 0.1.

5.1.3 Parameter Settings. We use the default parameter settings for
the XGBoost model6. The number and the maximum depth of trees
are 100 and 4, respectively. If a transaction is assigned to 𝑛𝑡ℎ or
higher leaves, we adjust its index to 𝑛. The embedding dimension

6https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

of each leaf, importer ID, and HS code is set to 16, and we use
the 16-dim attention layer and self-attention with 4 heads. The
learning rate of 0.005. The mini-batch size is set to 128. We set the
weight of final loss (Eq. 8) 𝛼 = 10, and the regularization parameter
𝜆 = 0.01. During the training process, we save the best model using
validation set and accordingly predict test transactions after the
termination of the fifth epoch.

5.2 Performance Comparison
We compared DATE with six baselines. For a fair comparison be-
tween tree-based approaches, we built a GBDT from the third base-
line and shared the trees with GBDT+LR, TEM and DATE. Both out-
comes of ourmodel using𝑦𝑐𝑙𝑠 and𝑦𝑟𝑒𝑣 are reported asDATECLS and
DATEREV, averaged over 20 runs.

• Price: Widely used targeting method by selecting in the order
of the most valuable transactions.

• Importer: Targeting transactions in the order of importers re-
ported by the highest rate of fraud so far.

• IForest [18]: Tree-based anomaly detection algorithm trained
on clean transactions to detect whether a new transaction is an
outlier. That said, IForest treats outliers as illicit ones.

• GBDT (XGBoost) [7]: State-of-the-art tree-based model with
cross features, trained on binary label 𝑦𝑐𝑙𝑠 .

• GBDT + LR [14]: Logistic regression based on cross features
extracted from GBDT, trained on binary label 𝑦𝑐𝑙𝑠 .

• TEM [28]: State-of-the-art tree-enhanced embedding model with
attention networks.We change its objective function fromBayesian
Personalize Ranking (BPR) to cross entropy for classification.

Table 3 displays the performance with respect to Precision@n%,
Recall@n%, Revenue@n%, AUC, and F1 score. Among baselines,
tree-based models show fairly good results and perform much
better than Price and Importer. GBDT+LR outperforms GBDT in all
metrics, which demonstrates the model’s strength in flexibility of
giving weights to different cross features. TEM shows comparable
performance against other baseline methods in terms of n equals to
2%, 5% and 10%. The performance of TEM indicates the effectiveness
of using dense vector to embed cross feature into a low dimensional
space and, incorporating attention mechanism to give dynamic
weights for cross feature.

Although TEM achieves great performance, it fails to capture
interactions among cross features. Besides, none of the baseline



methods consider optimizing classification loss and revenue pre-
diction simultaneously. In our DATE, we utilize self-attention to
capture interactions among cross features and further obtain aspect-
level embeddings by concatenating different heads in self-attention.
Therefore, the performance of the DATECLS model is far ahead of
other baselines in all measures except revenue. We can also confirm
that DATEREV is the most effective method to guarantee the most
significant revenue for customs administration.

Due to a large imbalance in data, AUC of strong baselines are
above 90%, so the results say that F1-score can better discrimi-
nate the model performance for overall prediction. For customs
detection problem with n% inspection rate, revenue differences are
substantial even between the state-of-the-art models, which prove
the effectiveness of our proposed algorithm.

5.3 Ablation Analysis
To validate the contribution of each component of DATE, we con-
duct an ablation study by examining the performance after remov-
ing each component, listed and denoted as follows.
• DATECLS (Full Model): Use all components.
• w/omulti-head self-attention (MSA): Simple version without
learning the relation between cross features.

• w/o fusion with HS & Importer embeddings (FHI): Variant
of the model in which HS and importer ID are not utilized as the
inputs for the second stage.

• w/o dual task leaning (DTL): After training the model only
on the binary labels, use the predicted probability values for
selecting transactions.

• w/o attention network (AN): Treat each cross feature equally
without considering the dynamic attention weights.

Table 4: Results on the ablation study of the proposed DATEmodel.

𝑛 = 1% 𝑛 = 5% 𝑛 = 10%

Model Pre. Rev. Pre. Rev. Pre. Rev.

Full Model 92.66% 44.97% 38.77% 84.35% 20.24% 89.03%
w/o MSA 91.83% 41.22% 38.47% 82.64% 20.17% 86.34%
w/o FHI 89.89% 27.91% 36.03% 80.39% 19.12% 78.79%
w/o DTL 90.72% 35.11% 37.57% 78.46% 19.74% 85.25%
w/o AN 91.58% 40.20% 38.11% 80.54% 19.02% 87.69%

Table 4 shows the effectiveness of each module. We can have
the following findings. First, all measures drop substantially when
removing the fusion operation in our model. This shows that using
only cross features without importer and item information hurts
the performance. The step of Fusion is absolutely necessary be-
cause it simultaneously learns the correlation among cross features,
importers, and items so that various behaviors of importers and
items can be distinguished (e.g., distinguishing new importers from
existing ones). Second, Revenue@n% apparently drops without
utilizing dual task learning. Such a result indicates that optimizing
revenue prediction and classification task simultaneously mutu-
ally reinforces the effectiveness of both tasks. Third, removing the
attention network worsens the performance in all metrics. This
proves the usefulness of giving dynamic weights to cross features
based on how they are attended by importers and goods. Fourth,

although removing self-attention nearly maintain the performance
on Precision@n%, it fails to achieve comparable performance𝑤.𝑟 .𝑡 .

Revenue@n%. It demonstrates learning aspect-level features by
multi-head self-attention can benefit the revenue prediction. In
short, every component of our DATEmodel truly takes effect in the
performance of both tasks. The design of DATE is verified.

5.4 Effects on Training Length
We wonder how much the model’s performance varies depending
on the amount of training data. We conducted the experiments by
varying the length of the training data of six months. The validation
set and the test set were kept intact, and the most recent 𝑘 months
were used for training. Figure 3 shows that the performance rapidly
increases until about two years of past data are secured, then the
increment becomes smaller. As Figure 4 shows, it can be concluded
that the richer the learning data, the less new information is ac-
quired. Thus the performance improvements are gradually reduced.
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Figure 3: Performance by changing training length.
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Figure 4: Coverage of two test attributes in training set.

5.5 Performance on Test Subgroups
Among transactions declared in customs, some importer IDs and
HS codes are more frequent than others. To examine how the oc-
currence frequency affects the performance, we break down the
test set into several subgroups, described as below.
• Importer: We divide importers into five subgroups based on the
number of times they appear in the training set. For example,
Imp[0] denotes the new importers, and Imp(0, 10] denotes the
group of importers who appeared, but less than or equal to 10
times.

• HS: We divide HS codes into five subgroups in a similar way.
Since our DATE learns the embeddings of importers and HS codes,
we expect different frequencies affect the effectiveness. Table 5 shows
each subgroup’s prediction results and its corresponding illicit ratio
based on DATECLS. Among importer subgroups, active traders (i.e.,



Table 5: Performance generated byDATECLS on different subgroups
of importers and HS codes in terms of various frequencies.

𝑛 = 1% 𝑛 = 5%

Subgroup Pre. Rec. Rev. Pre. Rec. Rev. Illicit rate

Imp[0] 100.00% 39.27% 37.87% 45.72% 89.94% 87.41% 2.51%
Imp(0, 10] 98.84% 41.47% 35.60% 42.44% 89.18% 81.57% 2.37%
Imp(10, 50] 98.86% 37.25% 35.44% 46.43% 87.46% 80.43% 2.65%
Imp(50, 250] 91.72% 46.16% 38.64% 32.76% 82.31% 76.35% 1.99%
Imp(250,∞) 72.76% 45.24% 53.10% 23.80% 73.90% 79.39% 1.60%

HS[0] 97.09% 27.52% 29.28% 51.21% 72.83% 70.66% 3.51%
HS(0, 312] 91.50% 41.00% 53.74% 35.40% 79.35% 88.15% 2.23%
HS(312, 1781] 96.20% 44.48% 40.15% 39.45% 91.22% 84.08% 2.16%
HS(1781, 8714] 98.19% 65.65% 54.79% 28.31% 94.67% 82.35% 1.49%
HS(8714,∞) 99.81% 55.47% 56.21% 33.16% 92.16% 96.00% 1.17%

Imp(250,∞) ) seem to commit the lowest fraud rates, comparing to
the inactive traders (i.e., Imp(0, 10] and Imp[0] ). This might reveal
that importers probably tend to apply new IDs to avoid leaving
illicit records and to deceive customs offices. The results on HS
codes exhibit similar trends. Transactions with unpopular items
tend to be predicted as illicit ones. Such a result can be linked to
the manipulation of HS codes we introduce in Table 1. The results
also show that DATE achieves a nearly 90% recall rate for unseen
importers while the performance is lower for active importers due
to their low illicit rate. Meanwhile, different from the results of
importers, DATE leads to a remarkable recall rate in commonly-
appeared HS codes. Since WCO creates HS codes for new goods
once in a while, DATE performs poorly on HS[0] .

5.6 Case Studies
Despite our DATE achieves remarkable performance on detecting
frauds, it remains unknownwhat evidences are identified byDATE to
predict the illicitness. To demonstrate the interpretability of DATE,
Table 6 lists the comparison between illicit and licit cases with their
corresponding cross features. We select the top-2 significant cross
features based on the highest attention scores. Among the transac-
tions in the data, used cars take the largest proportion, from which
importers have higher possibility to report lower value so as to
evade additional taxes. Hence, we select two used car transactions
and analyze their differences.

Table 6: Comparison of illicit and licit transaction w.r.t their corre-
sponding cross features (CF) with highest attention score.

Illicit case Licit case

Item Used TOYOTA VENZA, $16,863 Used TOYOTA CAMRY, $4,673

CF 1 risk.importer=0 & tax.ratio<43.7% &
gross.weight<3327.43 & fob.value>$1,366 12.2%<tax.ratio<16.8% & face.ratio>62.5%

CF 2 value/kg>$2 & cif.value>$1,912 &
risk.(office,importer)=0 & tax.ratio <0.18%

risk.HS.origin=0 & value/kg<$2 &
cif.value>$1,640 & risk.(office,importer)=0

�̂�𝑐𝑙𝑠 0.9849 0.0001

For the illicit transaction, the cross features show that it has
a high trade value (i.e. cif.value, fob.value) and low gross.weight
while reporting a small portion of taxes obtainable (i.e., tax.ratio
< 0.18%). In addition, the value per kilogram (i.e., value/kg) is rela-
tively higher than the licit one. These variables present the high

transaction value of used cars, but customs only receive a little
amount of taxes. The result happened to be a convincing example
of undervaluation of trade goods (mentioned in Table 1). The trans-
action obtainable from DATE are also examined by WCO customs
office, who pointed out that the transaction has a low value per unit.
Such a statement from WCO domain experts draw an echo with
cross features identified by DATE, which prove DATE has some
potential to achieve human-level interpretability. Compared to the
illicit case, the licit transaction exhibits normal trading information.
Even though cif.value is larger than $1640, the tax ratio falls in an
acceptable interval. Beside, value/kg is relatively small, indicating
that there might not exists undervaluation problems. Regarding
to the comparison listed in Table 6, we can conclude that DATE is
able to effectively identify evidences that significantly determine
whether a transaction is illicit. And the cross features with higher
attention weights can be used to interpret the prediction results.

6 DISCUSSIONS
Deployment Plan and Expected Outcomes. The next phase of this

research is to deploy and confirm the efficacy of DATE in a live
system. This operation will be in close collaboration between the
research teams, the World Customs Organization (WCO), and the
Nigeria Customs Service (NCS)7. The test will be conducted in the
two major ports of Nigeria — Tican port and Onne port — which are
in charge of nearly 41% of all trade flows with a phased-in approach
as follows:
• In the 1st phase, the model’s predictions would be matched
against the corresponding inspection results ex-post factor. It
aims to verify our model’s performance.

• In the 2nd phase, the officers from NCS would be informed with
the model’s predictions before they inspect the corresponding
imports. It aims to examine whether informed officers perform
better in detecting frauds.

• In the 3rd phase, NCSwill reduce the number of inspections based
on the model’s predictions. It aims to measure additional metrics
such as average clearance time, reduced cost for inspection, in
comparison with reduced tax revenues.

Challenges. For the historical import transactions that were iden-
tified as illicit, the NCS e-clearance system has two values; one
initially declared by importers and the other adjusted by NCS af-
ter inspections/audits. The two values may have a difference in
fob.value, cif.value and total.taxes. While our algorithm should have
been trained and tested with all the initial values, NCS had a techni-
cal glitch in extracting initial values from the system. Alternatively,
for the undervalued imports which comprise 3.83% of our dataset,
we used the adjusted values and conducted some experiments to
check the robustness of our algorithm. In the deployment test, this
problemwill be solved as our algorithmwill be tested with real-time
import data before any adjustment by NCS.

Way to Leverage Existing Data. We note that the average cif, fob,
and total.taxes values of illicit transactions are 66% higher than that
of a typical transaction. Assume that there is no difference in the
corresponding values for illicit and licit transactions. We can conjec-
ture that the difference between the two groups is partially due to
7https://customs.gov.ng/



Table 7: Results on revised data by DATE.

𝑛 = 1% 𝑛 = 5% 𝑛 = 10%

Rescaling Pre. Rev. Pre. Rev. Pre. Rev.

None 94.18% 44.55% 38.77% 83.98% 20.27% 89.30%
Deterministic 92.77% 44.80% 37.13% 77.69% 19.64% 84.41%
Stochastic 95.05% 42.38% 36.96% 77.11% 19.58% 83.90%

information updates. So, we conducted experiments by realistically
rolling-back the cif, fob, and total.taxes values by two methods:
• Deterministic: multiply by a scalar value 0.6.
• Stochastic: multiply a Gaussian randomvariable𝑋 ∼ N(0.6, 0.12) .
The revised dataset on which the action was taken has similar value
distribution between illicit and licit transactions, which is harder
to predict. Table 7 shows that DATE performs comparably well on
the revised datasets. Such results mean that DATE can learn from
various patterns from import transactions, without dominated by
biased distributions due to the errors. With this experiment, we
expect that DATE will perform smoothly when the data pipeline
is fixed, and we can receive cleaner data.

7 CONCLUSION
With the astronomically growing trade flows, customs administra-
tions need effective and explainable methods to detect suspicious
transactions. This paper presented DATE, a novel model that ranks
trade flows in the order of fraud risk and to maximize customs
revenue. Based on the test on five years’ worth of import data, we
confirm the superiority of DATE over state-of-the-art models. Pre-
dictions of DATE are interpretable, thanks to its decision rules from
GBDT and the weights from the attention mechanism. Based on its
outstanding performance and interpretable nature, we expect that
DATE can be easily integrated into customs administrations and
assist customs auditors inspect the fraud risk of individual transac-
tions. DATE is robust against noise in input data and identify any
manipulation of HS codes and countries of origin, which are also a
popular type of customs fraud. In the first half of 2020, DATE will
be deployed for testing under real-time import flows of Nigeria,
and the trained model will be further tested on the import data of
four other member countries of WCO.
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SUPPLEMENTARY MATERIAL
7.1 Code and Data Availability
Our DATE model is open-sourced at http://bit.ly/kdd20-date.
In line with this study, we also developed virtual customs data
for research purposes and released it through the repository.8 The
source code runs compatible with synthetic data. Unfortunately, the
import transaction data used in the paper cannot be made public
due to non-disclosure agreements, but for all that the synthetic
data provided with our code is realistic to apply and test machine
learning algorithms. The World Customs Organization launched a
collaborative research project (BACUDA; Band of Customs Data
Analysts) to encourage member countries to use big data analytics.
We expect the community to conduct visible research through
realistic data and publish models beneficial to the public sector.

7.2 Hyperparameter Analysis
We analyze the performance of the model by varying hyperparame-
ter values of each module, such as the number of trees 𝜏 (Eq. 1) and
the depth of the first-stage gradient boosting decision trees (GBDT),
embedding dimension 𝑑 of cross features F𝑖 , leaves importer ID
𝑝𝑢 and goods identifier 𝑞ℎ (Eq. 5) from the second-stage attention
network. Due to lack of space, we demonstrate the performance
patterns by changing representative parameters and fixing other
parameters with default settings mentioned in Section 5.1.3. Among
various metrics, we report Precision@n% and Revenue@n%, since
the results from other metrics show similar patterns. The results
are averaged over ten repeated experiments.

7.2.1 Analysis on Tree Number. Figure 5 shows the effect of chang-
ing the number of trees 𝜏 . Note that we report the performance
of DATE, not the performance of GBDT. From the result, We can
confirm that the default value 𝜏 = 100 is well set for training DATE.
In all cases, the smaller number of trees 𝜏 ∈ {25, 50} in the first
stage showed lower performance than the default setting 𝜏 = 100.
For some cases, 𝜏 = 200 shows better performance. But, the per-
formance drops by having more trees, 𝜏 = 400. We can conclude
that DATE needs a sufficient number of trees to provide adequate
information for subsequent attention mechanisms.
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Figure 5: Performance difference by tree number of GBDT.

8CTGAN [30] is used for synthetic data generation.

7.2.2 Analysis on Tree Depth. Figure 6 shows the effect of changing
the tree depth. Unlike previous experiment, the default parameter
depth = 4 was not the best parameter. From the result, we can see
that DATE with simpler tree with depth ∈ {2, 3} performs better
than the DATE with depth = 4. Tree with additional complexity,
depth ∈ {5, 6} does not always guarantee additional performance,
except for Precision@2%. One of the reasons thatDATE does not get
benefit from tree depth is the way in which cross features obtained
from the tree are utilized. Even if the decision rule obtained from
the leaf is complex, the embedded value would not be complex in
an explicit manner since the dimension of dense representation is
fixed. We can interpret that embeddings from concise rules make a
synergy to train the following attention mechanism.

2 3 4 5 6
75

80

85

90

95

100

Tree depth

Pr
e@

n%

1% 2% 5% 10%

2 3 4 5 6
75

80

85

90

95

100

Tree depth

R
ev
@
n%

Figure 6: Performance difference by tree depth of GBDT.

7.2.3 Analysis on Embedding Size. Figure 7 shows the effect of
changing dimensions 𝑑 of cross features, importer ID, and HS codes.
Due to high cardinality of importer id (= 165,305) and HS codes (=
4,704) variables, the embedding size is shown to be at least 16 to
perform well. However, the performance improvement is marginal
for 𝑑 > 16. Since the computation cost of attention mechanisms
increases polynomially by increasing the embedding size, we can
confirm that 𝑑 = 16 is a good setting to ensure both effectiveness
and efficiency.
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Figure 7: Performance difference by embedding size.
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Figure 8: Performance difference between DATECLS and DATEREV by controlling loss weights 𝛼 .

7.3 DATECLS and DATEREV by controlling 𝛼
We measure the performance difference between DATECLS and
DATEREV by controlling the weight 𝛼 between two sub-losses L𝑐𝑙𝑠
and L𝑟𝑒𝑣 (Eq. 8). As described in Section. 5.2, DATE learns from
dual-task optimization and the predicted values 𝑦𝑖𝑐𝑙𝑠 and 𝑦𝑖𝑟𝑒𝑣 can
be used to select top-n% of transactions, we named these inspection
approaches as DATECLS and DATEREV, respectively. Since the final
objective function L𝐷𝐴𝑇𝐸 can be controlled by the weight 𝛼 ,

L𝐷𝐴𝑇𝐸 = L𝑐𝑙𝑠 + 𝛼L𝑟𝑒𝑣 + 𝜆∥Θ∥2, (10)

one can raise a question about how the DATECLS and DATEREV re-
sults change according to the parameter 𝛼 . For instance, DATEREV
should have high Revenue@n% with large 𝛼 , or small 𝛼 should
guarantee higher Precision@n% for DATECLS. For this experiment,

we use the parameter𝛼 in the range of𝛼 ∈ {0.001, 0.002, 0.005, . . . , 200},
where the default parameter value was 10.

Figure 8 shows the effect of varying changing 𝛼 . Notably, Pre-
cision@1% and Revenue@1% are affected the most among 𝑛 ∈
{1, 2, 5, 10}. As in the leftmost figures, the ranges of Precision@1%
and Revenue@1% are over 15%. For all inspection rates, the larger
the 𝛼 , the higher the Revenue@n% as expected. But, the Preci-
sion@n% does not always follow the estimated behavior except
Precision@1%. Note that Revenue@1% of DATEREV shows 51.5%
with 𝛼 = 100, which is 2% higher value than the result with 𝛼 = 10,
which was reported in Table 3. The results also show that the per-
formance of DATEREV changes more drastically than DATECLS. In
accordance with the customs policy and the evaluation criteria,
practitioners should control 𝛼 carefully and use two outcomes 𝑦𝑖𝑐𝑙𝑠
harmoniously for customs inspection.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Settings
	3.1 Dataset
	3.2 Customs Fraud Detection Problem

	4 Our Model: DATE
	4.1 Tree-based Cross Feature Embeddings
	4.2 Dual Attentive Mechanism
	4.3 Dual-Task Learning

	5 Evaluation
	5.1 Evaluation Settings
	5.2 Performance Comparison
	5.3 Ablation Analysis
	5.4 Effects on Training Length
	5.5 Performance on Test Subgroups
	5.6 Case Studies

	6 Discussions
	7 Conclusion
	Acknowledgments
	References
	7.1 Code and Data Availability
	7.2 Hyperparameter Analysis
	7.3 DATECLS  and DATEREV  by controlling 


