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Abstract
Recently, there is a growing number of off-line stores that are willing to conduct customer
behavior analysis. In particular, predicting revisit intention is of prime importance, because
converting first-time visitors to loyal customers is very profitable. Thanks to noninvasivemon-
itoring, shopping behaviors and revisit statistics become available from a large proportion of
customers who turn on their mobile devices. In this paper, we propose a systematic frame-
work to predict the revisit intention of customers using Wi-Fi signals captured by in-store
sensors. Using data collected from seven flagship stores in downtown Seoul, we achieved
67–80% prediction accuracy for all customers and 64–72% prediction accuracy for first-time
visitors. The performance improvement by considering customer mobility was 4.7–24.3%.
Furthermore, we provide an in-depth analysis regarding the effect of data collection period
as well as visit frequency on the prediction performance and present the robustness of our
model on missing customers. We released some tutorials and benchmark datasets for revisit
prediction at https://github.com/kaist-dmlab/revisit.

Keywords Revisit prediction · Retail analytics · Predictive analytics · Feature engineering ·
Marketing · Mobility data

1 Introduction

1.1 Motivation

By identifying potentially loyal customers who are more likely to revisit, merchants can
considerably save on promotion cost and enhance return on investment [27]. Many studies
in recent years have focused on online stores and online text reviews with the help of a data
provider [18,42]. In contrast, the analysis of revisit intention in the off-line environment
has not been carried out. The main reason lies in the difficulties of collecting large-scale
data that is closely related to key attributes of revisiting, such as customer satisfaction with
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products, service quality, atmosphere, purchase history, and personal profiles [37,42]. Those
attributes are either subjective or confidential, which are not easily accessible. Owing to
these limitations, research on customer revisits in off-line stores has been conducted through
surveys. These studies help us gain an understanding of underlying hypotheses that affect
customer satisfaction. However, their findings cannot be easily generalized because of a small
sample size.

With the advance of sensing technologies such as radio-frequency identification (RFID)
[8,35], Bluetooth [45], and Wi-Fi fingerprinting [36], we are capable of collecting high-
frequency signal data without installing any applications on customer devices [29,30]. These
signals can be converted to fine-grained mobility data. Using such data, noninvasive mon-
itoring of visitors has been carried out in different settings, such as in museums [45] and
supermarkets [40], providing empirical findings of customer behaviors. Nowadays, collect-
ing data in a certain physical boundary is called as geofencing [32] and its market size is
increasing rapidly. Companies such as ZOYI, VCA, RetailNext, Euclid, ShopperTrak, and
Purple installed their own sensors to geotrack real-time mobility patterns of customers in
their clients’ stores. Their proprietary solutions provide visitor monitoring results, such as
funnel or hot-spot analysis results displayed through a dashboard. In addition, it is expected
that huge amounts of shopping behaviors will be generated in cashier-less stores introduced
by the enterprises such as Alibaba and Amazon.

1.2 Contribution

In this paper, we propose a systematic framework for predicting the revisit intention of
customers using Wi-Fi signals captured by in-store sensors. Our framework includes the
entire procedure for revisit prediction—from data preparation to model learning. The key
challenge is how to generate the most effective set of features from the Wi-Fi signals. We
systemically design the features to summarize each visit in two aspects. First, we interpret the
device location at various semantic levels to understand user behaviors. Second, we utilize
weak signals usually captured outside a store to expand our trajectory to the widest possible
range. Using this information, we are able to track a customer’s behavior outside the store
even if they did not enter the store.

We also benefit from large-scale customer mobility data captured by in-store sensors.
Seven flagship stores in downtown Seoul were carefully selected for data collection to cover
various shop categories. The number of unique customers collected in the seven stores reaches
3.75 million. The data is very attractive because we can capture approximately 20–30%1 of
customer mobility without any intervention. Furthermore, the data collection period is 1–2
years, which is long enough to study revisit behaviors.

Figure 1 illustrates the overall procedure of our prediction framework. If a customer comes
into a store, the framework detects his/her Wi-Fi signals, and through the data preprocessing
described in Sect. 2.2, transforms the signals to a visit and an occurrence. From the customer’s
visit and previous occurrences, extensive features are derived to describe his/her motion
patterns, as discussed in Sect. 4. In this regard, our framework relies upon the belief that
motion patterns unconsciously reflect consumer’s satisfaction with the store [13]. Finally,
we can predict his/her revisit behavior, using a trained model.

Our experiments demonstrate that our revisit prediction framework achieves up to 80%
accuracy of the binary revisit classification of all trajectories. Additionally, it successfully

1 The proportion of users in their twenties who keep their Wi-Fi on is 29.2%, according to a survey by Korea
Telecom (July 2015).
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Fig. 1 Revisit prediction framework architecture

Fig. 2 Revisit statistics of store
E_GN. E[RVbin(vk )] denotes the
average revisit rate of the group
of visitors who visit k times

predicts the revisit of first-time visitors by up to 72% accuracy. In the case of actual apparel
stores, it is very useful to predict the revisits of first-time customers, because they account for
more than 70% of all visitors. Most importantly, our 80% accuracy is achieved by features,
all derived from Wi-Fi signals with minimal external information (dates of public holidays,
clearance sales). Thus, we expect that the prediction power will rise significantly by adding
private data such as personal profiles and purchasing patterns.

Figure 2 illustrates the observed revisit statistics during the data collection period in store
E_GN. The black line denotes the number of observations |vk | of kth visits (vk ), and the
gray line denotes the average revisit rate E[RVbin(vk)] of all vk’s. The fact that the |v5| is
100 times less than |v1| implies that it is very difficult to retain first-time visitors as regular
customers. It also describes how valuable it is to raise the revisit rate of first-time visitors that
account for 70% of all customers,2 thereby emphasizing again the importance of our work.
Along with the model accuracy, we report the predictive power of each feature group and
semantic level to show whether or not the trajectory abstraction boosts the predictability. We
also demonstrate the effectiveness of using customer mobility features in comparison with
baseline models considering visit distribution and temporal information. We discuss how the
collection period and the volume of data affect performance. Another important goal of this
paper is to share the unexpected challenges faced when two groups of data show inherent
differences in a statistical sense.

This paper extends our earlierwork [12] presented at IEEE ICDM2018and also selected as
one of the best papers. In particular, the evaluation of our framework has been significantly
improved by addressing the comments to our earlier work. In this extended version, we
empirically show that mobility features are effective even with a few records, by tracking
the predictive power of our model conditioned on the number of previous visits. We also

2 In Fig. 2, the ratio of the first-time visitors in store E_GN is over 70%. We made a few assumptions to
interpret the data as it is and will discuss them in “Appendix D”.
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Table 1 Statistics of the datasets

Store ID A_GN A_MD E_GN E_SC L_GA L_MD O_MD

Category (Footwears) (Fast-fashion) (Character shop) Cosmetics

Length (days) 222 220 300 373 990 747 698

Sensors 16 27 40 22 14 11 27

Total signals 165M 890M 940M 632M 1.94B 2.82B 6.50B

Total sessions 19.9M 33.9M 81.4M 34.1M 40.3M 74.3M 90.7M

Indoor sessions ≥ 5s 637K 3.25M 1.35M 1.92M 5.46M 11.1M 15.6M

Visits ≥ 60s 113K 328K 183K 270K 1.06M 1.72M 2.01M

Unique visitors ≥ 60s 101K 232K 147K 187K 846K 1.17M 1.07M

Avg. revisit rate 11.7% 32.0% 21.2% 36.6% 21.2% 33.0% 48.7%

test various machine learning techniques and their stacked ensemble model, in addition to
XGBoost [4] used in our earlier work.

The remainder of this paper is organized as follows. In Sect. 2, we describe the datasets
used in this paper. After introducing themain concepts and formalizing the problem in Sect. 3,
we describe the characteristics of the features in Sect. 4. In Sect. 5, we explain the experiment
settings and present overall prediction results. Also, we discuss the lessons and challenges
obtained through the experiments. After reviewing related work in Sect. 6, we conclude this
study in Sect. 7.

2 Data description

In this section, we introduce our customer mobility data captured from off-line stores. The
number of customers in our data is very high, and the collection period is long enough
to obtain reliable results. Throughout this section, we share some statistics of our datasets
and introduce necessary preprocessing to find meaningful semantics from the raw Wi-Fi
signals.

2.1 Data collection stores

We collected data from seven flagship stores located in the center of Seoul. Each of these
stores is one of the largest stores of each brand, consisting of several floors. These stores
are known to be the busiest stores in Korea. Because of their location and size, these stores
have up to 10,000 daily visitors. For example, our target store E_GN is a four-story building
located on the side of a Gangnam boulevard where two million people walk by each month.
Store E_SC is located on the ground floor of a major department store in the downtown
Sinchon area, which is also connected to one of the busiest subway stations used by college
students. Table 1 presents the statistics of the seven datasets, and Fig. 3 illustrates the location
of sensors and categories of two stores E_GN and E_SC.3

3 Owing to a nondisclosure agreement, additional store information cannot be disclosed.We encourage readers
to think that dozens of sensors cover the other stores in a similar manner.
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(a)

(b)

(c)

Fig. 3 Location of sensors and categories of two stores E_GN and E_SC. Wi-Fi icons indicate the location of
the sensors, and the category names for each section are described in (c)

2.2 Preprocessing to generate trajectories

2.2.1 Signal-to-session conversion

To collect Wi-Fi signals, we utilized ZOYI Square sensors developed by WalkInsights.4

The installed sensors enable us to collect Wi-Fi signals from any device that turns on
its Wi-Fi. A single Wi-Fi signal includes an anonymized device ID, sensor ID, times-
tamp, and its received signal strength indicator (RSSI) level, which is a measurement of
the power present in a received radio signal. Signals are collected continuously from each
device at fairly short intervals, which are less than 1s. To understand customer mobility,
we carry out a conversion process to remove redundant signals and combine them into
Wi-Fi session logs. Each session includes a device ID, area ID, and dwell time, and it
becomes an element of a semantic trajectory. Predefined RSSI thresholds are utilized for
signal-to-session conversion. These values guarantee that the device is in the vicinity of
a sensor. The logic of this conversion is simple. For instance, a new session is created
when a sufficiently strong RSSI is received for the first time. The session continues if
the sensor receives consecutive strong signals, and it ends if the sensor no longer receives
strong signals. The session also ends if another sensor receives a strong RSSI from that
device.

4 https://walkinsights.com/sensors.
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Fig. 4 Generation of multilevel trajectories to predict a customer’s revisit intention: Using noninvasive mon-
itoring, customer Wi-Fi signals are collected. These are then transformed into a sensor-based trajectory, and
further summarized into categories, floors, genders, and surrounding areas. We extracted features from these
multilevel trajectories to determine the characteristics related to customer behavior

2.2.2 Location semantics

It is also possible to detect the semantic location of a customer by taking advantage of the
semantic coherency of contiguous sensors. For example, we can identify if the customer
is looking at daily cosmetics or she is in a fitting room. Additionally, we can describe a
customer’s location to floor-level or gender-level semantic areas. Moreover, we generate
in-/out-level areas by examining whether the customer is inside the store, nearby the store
(up to 5m), or far away from the store (up to 30m). This becomes possible by controlling
multiple RSSI thresholds to activate detection with weaker signals. Therefore, an entity of
Wi-Fi session data encompasses a customer’s dwell time not only in the area corresponding to
sensors but also in the wider semantic areas. By integrating the Wi-Fi sessions with different
semantics, we construct a multilevel semantic trajectory to describe each visit as illustrated
in Fig. 4.

3 Problem definition

In this section, we formally define the main concepts introduced in our paper. First, we define
a multilevel semantic trajectory (T) that expresses a customer’s motion pattern, and define
visit (v) and occurrence (o) using T. Next, we define the revisit interval (RVdays) and the
revisit intention (RVbin), which are the labels in our prediction model. Finally, we introduce
the revisit prediction problem.

3.1 Key terms and concepts

Definition 1 A semantic trajectory T is a structured trajectory of size n (n ≥ 1) in which the
spatial data (the coordinates) are replaced by semantic areas [43], that is, T = {s1, . . . , sn},
where each element ( = a session) is defined by si = (spi , t

(spi )
in , t (spi )out ). Here, spi represents

the semantic area, t (spi )in is a timestamp for entering spi , and t
(spi )
out is a timestamp for leaving

spi . �
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If a session length t (spi )out − t (spi )in is shorter than 5s considering walking speed and the distance
between adjacent sensors, a customer is likely to pass that area without consideration, and
thus, we delete the element from the trajectory.

Definition 2 Amultilevel semantic trajectoryT= {T1, . . . , Tl} is a set of semantic trajectories
with l (l ≥ 1) different semantic levels. Each semantic trajectory Ti represents a customer’s
trajectory using semantic areas of level i . �

For our indoor environment, we utilized semantic levels inside the store, except for the highest
level l indicating the in/out level. The total dwell time ofTl is always longer thanT1, . . . , Tl−1,
because the in/out mobility utilizes weak signals that can be captured for a longer period than
the strong signals used for indoor behavior.

Definition 3 A visit v is a unit action of entering the store. vk(c, [ts, te],T) is a kth visit by
customer c, who is sensed from ts to te, of which the motion pattern is described with a
multilevel semantic trajectory T. �

We consider only the visits that are long enough to represent meaningful behavior. For the
sensor-level trajectory T1, the total dwell time te − ts should be greater than 1min, because it
takes less than 1min to go through the store. The data preprocessing thresholds are empirically
configured depending on the size of a store and the number of sensors.

Definition 4 An occurrence o is a special case of a visit that represents a unit action of
lingering around the store without entrance. ok(c, [ts, te],T) is a kth occurrence by customer
c, who is sensed from ts to te, of which the mobility is only captured in the outdoor area with
T = {∅, . . . ,∅, Tl}. �

Although we did not have any personal information such as the customer’s residence, we
could measure his/her accessibility to the store through the occurrence. For each visit, we
use a set of previous occurrences as a reference to generate store accessibility features [SA],
which will be explained in Sect. 4.1.9.

3.2 Prediction objectives

If a customer revisits the store after d days, the previous visit v of the customer has a d-
day revisit interval, denoted by RVdays(v) = d , and a positive revisit intention, denoted by
RVbin(v) = 1, as in Definition 5.

Definition 5 If two consecutive visits of customer ci , vk = vk(ci , [tk,s, tk,e],Tk) and
vk+1 = vk+1(ci , [tk+1,s, tk+1,e],Tk+1), meet the condition tk,e < tk+1,s , the revisit inter-
val RVdays(vk) and revisit intention RVbin(vk) of the former visit vk are RVdays(vk) =
#days oftk+1,s − tk,e and RVbin(vk) = 1. If a visit vk does not have any following revisit,
then RVdays(vk) = ∞ and RVbin(vk) = 0. �

3.3 Predictive analytics

Our problem is now formally defined as follows:

Customer Revisit Prediction: Given a set of visits Vtrain = {v1, . . . , vn} with known revisit
intentions RVbin(vi ) and revisit intervals RVdays(vi ) (vi ∈ Vtrain), build a classifier C that
predicts unknown revisit intention RVbin(vnew) and revisit interval RVdays(vnew) for a new
visit vnew.
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4 Feature engineering

To have a multiperspective view of customer movements, we construct each visit as a five-
level semantic trajectory, T = {T1, T2, T3, T4, T5}, where the levels correspond to sensor,
category, floor, gender, and in/out, respectively.We expect the pattern captured usingmultiple
levels can be helpful in predicting customer revisits. Thus, some features were created for
each semantic level.

Table 2 gives a summary of the representative features in our framework. The first column
describes the ten different feature groups categorized by their characteristics. The first seven
feature groups are generated solely from the customer mobility itself. The last three feature
groups: Upcoming Events [UE], Store Accessibility [SA], and Group Movement [GM] are
generated using certain references: [UE] uses sales and holiday information for the near
future, [SA]uses theoccurrencesof the customer beforemaking this visit, and [GM]considers
other visits at the same time.

For seven stores, the total number of generated features varies from 220 to 866 depending
on the number of areas and the number of semantic levels used. T2, T3, T4-level features
are generated only for two stores: Store ID of E_GN and E_SC, where we continuously

Table 2 Description of the representative features according to the data sources and feature groups

Feature groups Twenty representative features
(Among 866 features of store E_GN)

Semantic level of features

T1 T2 T3 T4 T5 ∅
Overall statistics f1 = Total dwell time �

f2 = Trajectory length � � � �
f3 = Skewness of dwell time of each area � � �

Travel dist, speed,
acceleration

f4 = Total distance traveled inside the store �

f5 = Speed based on transition time � � � �
f6 = First-k HWT coeff. of acceleration � � � �

Area preference f7 = Coherency of dwell time for each level � � �
f8 = Top-k-area dwell time � � � �

Entrance and exit
pattern

f9 = Exit gate �

f10 = Number of prev. reentry on that day �
Heuristics f11 = Wears clothes but does not buy �
Statistics of each
area

f12 = Number of time sensed in the area � � � �

f13 = Stdev of dwell time for the area � � � �
Time of visit f14 = Day of the week �
Upcoming events f15 = Remaining day until the next sale �

f16 = Number of holidays for next 30 days �
Store accessibility f17 = Number of days since the last access �

f18 = Average interarrival time �
Group movement f19 = Presence of companions �

f20 = Number of companions �

The � indicates the best semantic level to describe each feature. For features with multiple �, the values
of the features at each level are different, thus having different meanings. Features f14, f15 and f16 have no
corresponding semantic level so we denote their semantic level as ∅
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tracked their floor plans during data collection periods. Among all features, we introduce 20
representative features to best describe the characteristic of each feature group. On the right
side of the table, the corresponding semantic level for each feature is marked.

Figures 5 and 6 display meaningful relationships between the feature values of f1, f7, f9,
f15, and f17 with the average revisit intention rate E[RVbin(v)]. By dividing total visits into
20 equal bins according to feature values, we can identify the association between feature
values and revisit rates without being affected by outliers.

Top 5% longest staying 
customers revisit 30% more.

the certain area revisit less.
Customers who focus on

People who stroll around 
the store revisit very o�en.

Customers who use the
back door revisit more.

Fig. 5 The relationship between the selected features and RVbin in store E_SC (E[RVbin(v) (v ∈ Vall)] =
0.3616). Each marker point represents the average revisit intention E[RVbin(v)] (v ∈ Vb) of the set Vb of
visits obtained by equal-frequency-binning the entire data according to feature values. Indoor moving pattern
features f1, f7, and f9 shows at most 40% deviation of E[RVbin(v)] according to the feature value. The store
accessibility feature f17 shows 325% deviation, which is the highest among the selected features. For f9, the
group of customers who are most likely to use the back door are located on the left side of the x-axis

(a) (b)

Fig. 6 Key factors of v1’s revisit: discount and seasonality. Discount-sensitive: A set Vb of customers who
visited between 30 and 45 days before a clearance sale showed a high E[RVbin(v)] (v ∈ Vb) compared to
other customers; this difference was more apparent in first-time visitors than all visitors. Seasonal-sensitive:
Another peak of E[RVbin(v)] appeared on the set of customers who made a visit between 90 and 105 days
before the sale. It described the seasonal revisit, and it was also more noticeable to first-time visitors than all
visitors
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4.1 Feature descriptions

In this section, we introduce the detail of each feature group used in our model. With the
background information for designing each feature, we show some correlations between
features and customer revisits.

4.1.1 Overall statistics [OS]

[OS] features represent the high-level view of a customer’s indoor movement patterns, and
therefore, the predictive power is relatively strong. By considering the trajectory as a whole,
we can extract features such as total dwell time ( f1), trajectory length ( f2), and average fre-
quency of each area. We also apply skewness ( f3) or kurtosis to measure the asymmetric or
fat-tail behavior of the dwell-time distribution of each area.

4.1.2 Travel distance, speed, and acceleration [TS]

[TS] features are in-depth information that needs to be explored [25]. To approximate the
physical distance ( f4) traveled by the customer, we created a network based on the physical
connectivity between areas. We used the transition time to obtain the shopping speed ( f5),
and we modeled the acceleration from the speed variation between consecutive areas. A
time series analysis using the Haar Wavelet Transform(HWT) [34] was performed, as well
as statistical analysis, to determine how the customer’s interests changed with time. We
included the first-16 HWT coefficients ( f6) in our feature set.

4.1.3 Area preference [AP]

With [AP] features, it is possible to identify the difference between a customer viewing a
specific area with high concentration and a person shopping lightly throughout the store. The
area name and dwell time ( f8), and its proportion over the total dwell time of the top-3 areas
at each level are included in the basic features. The coherency of each level ( f7) determines
the consistency of the customer’s behavior. The definition of the coherency metric is the
proportion of time spent in the longest staying area. This metric is effective to capture regular
customers who know the store’s layout and go directly to the desired area.

4.1.4 Entrance and exit pattern [EE]

Interestingly, customers leaving through the back door ( f9) revisited 13.6% more than cus-
tomers leaving through the front door, according to our data. Therefore, we estimated the
customers’ entrance and exit patterns from the sensors nearby the front and back doors. We
expected that customers familiar with the store might have used a more convenient door.

4.1.5 Heuristics [HR]

To fully exploit the relation between customer trajectories and revisits, we interviewed the
managers and part-timers of the stores to get intuitions on what kinds of patterns are likely
to appear from the customers who are willing to revisit. In general, the interviewees agreed
that staying in certain areas, trying an item, and purchasing or postponing the item can reflect
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customers’ interest and purchase pattern that lead to revisits. These steps of actions, in fact,
correspond to online shopping activities—i.e., browse, add to cart, checkout, and then revisit
or churn [18]. As we do not know whether a customer actually tried an item in the fitting
room or purchased it, we inferred those actions by tracking the dwell time in the fitting room
and the checkout counter. Here are two representative heuristics anticipating the revisit of
customers for future purchase.

– If a customer wears clothes in the fitting room without purchase (≤ 1min in the checkout
counter): f11 = 1, for all other cases: f11 = 0.

– If a customer stays in the store much longer (= 10min) than average visitors, without
purchase: f = 1, if not: f = 0.

The reasons for these associations are as follows. If the customer tries an item or stays in the
store for a long time, he/she is prone to purchase the item. However, the fact that the customer
does not purchase the item right away implies that there is a possibility of purchasing that
item at the next visit.

4.1.6 Statistics of each area [ST]

If a certain semantic area is highly relevant to revisit, the statistics from that area have higher
predictability. For all semantic areas, we created six features including the number of times it
was sensed ( f12), the percentage of the total time spent in the area (that is used for developing
the coherency feature), and the standard deviation of the times sensed in the area ( f13). As
explained before, the difference in the total number of features is mainly due to the difference
in the number of areas that each store has.

4.1.7 Time of visit [TV]

The temporal features include the time of visit such as the hour of the day and day of the
week ( f14) as basic features. The values of the features described above are ordinal and thus
were transformed into multiple binaries by one-hot encoding. The value of a temporal feature
is determined by the entrance time.

4.1.8 Upcoming events [UE]

Customers are more likely to visit a store in the period of a clearance sale. However, they are
less likely to visit the fashion district in the holiday seasons(e.g., Spring Festivals, Thanks-
giving week) since they are out of the city center. For example, customers who visited one
month before the clearance sale have higher chance to revisit since they would like to get
a discount during the upcoming sales. By combining simple extrinsic information, the tem-
poral features, particularly [UE], become the second strongest predictive feature groups. It
contains six features, including a number of days left for the next clearance sale ( f15) and a
number of holidays for next 30 days ( f16), as numeric features.

4.1.9 Store accessibility [SA]

When installing sensors inside the store, could you imagine that the weak noise collected
outside the store would provide the most important clue to predict revisit? Surprisingly,
the revisit predictability increased dramatically when we included [SA] features using weak
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signals,which couldhavebeenoverlooked asmere noises. The following settings are expected
to be applicable to many studies when conducting research using in-store signals that do not
contain customer address information.

The features are designed to capture various aspects from interarrival times. We utilized
two additional outdoor areas nearby the store—5m and 30m zone—to detect the customer
occurrences. Considering a customer’s arrival process to 5m zone, let us denote the time of
the first occurrence by T1. For k > 1, let Tk denote the elapsed time between k − 1th and
the kth event. We call the sequence {Tk, k = 1, 2, ..., } as the sequence of interarrival times.
Considering the target visit as nth event of the arrival process, we use the following features:

– n − 1: Number of occurrences before the visit;
– Tn : Number of days from the last occurrence ( f17);
– 1n>1: Existence of having any occurrence before the visit;
– μ = ∑n

k=2 Tk/(n − 1): Average interarrival time ( f18);

– σ =
√∑n

k=2(Tk − μ)2/(n − 1): Standard deviation of interarrival times;

In addition to these five features from Tk , we added the average sensed time for previous
occurrences.

4.1.10 Groupmovement [GM]

Unlike previous features, [GM] features were extracted by considering multiple trajectories.
This is a representative feature that can only be captured by analyzing surrounding trajectories
that happened simultaneously with the main trajectory. In our feature extraction framework,
we considered the presence of companions ( f19) and the number of companions ( f20). One
of the biggest characteristics of judging whether or not to be a companion is to enter the store
at the same time. Based on the information obtained through the field study, we considered
that two visitors are in a group when their entrance time and exit time are both within 30s.
Additional information related to this feature can be found in Sect. 5.3.2 and “Appendix D”.

4.2 Unused features

Some potentially useful features were not included in our final model because their effect
on the accuracy was marginal. However, we would like to mention them since they could be
useful in other types of predictive analytics [14,18].

4.2.1 Sequential patterns

Sequential patterns [7,14] were not effective for the revisit prediction task on our datasets,
so we omitted them from the final framework. To briefly describe our approach, we retrieved
top-k discriminative sequential patterns by the information gain and generated k features.
Each feature fi (v) denotes the number of times a trajectory of visit v contains i th patterns.
We considered diverse levels of sequential patterns, as in Table 3, but the result was not
satisfactory. Despite that it was expensive to generate the features, their information gains
were typically low.
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Table 3 Types of sequential patterns

Pattern type Description

A → B → C A sequential pattern having an order, where the following element appears
immediately after the previous element

A
∗→ B

∗→ C A partial sequential pattern [14], an arrow A
∗→ B denotes that there

might exist additional elements between A and B

Ashort
∗→ Blong

∗→ Cshort A partial sequential pattern which has a time constraint for the dwell time
of each element

4.2.2 Past indoor information

We excluded the features that average up the customer’s previous indoor mobility statistics,
as well as those that represent the amount of changes from past statistics [18]. By nature, the
number of features becomes doubled per revisit by considering that information. However,
they were not a strong indicator of revisits unlike [SA] and thus were removed.

4.2.3 Features that may interfere with fair evaluation

Since most customers have a small number of visits, we developed a general model that con-
siders the mobility of the entire set of customers. According to this principle, we considered
each visit separately, by removing customer identifiers. In this way, we can also ensure that
our model is robust to general cross-validation settings. We excluded the visit date to avoid a
biased evaluation that favors the customers who visited in an earlier period. We also ignored
the explicit visit count information.

5 Evaluation results

In our experiments, we verify that our feature set designed from customer mobility patterns
is effective in predicting customer revisit, especially for newcomers. In addition, we verify
the performance of individual feature groups and semantic levels. Throughout the discussion
section, we provide more detailed analyses regarding the revisit prediction. The key contents
include the demonstration of the performance change over the length of data collection
period and model robustness on missing customers. We conclude this section by sharing the
difficulties of securing accuracy in line with the gap between the predictive power and the
statistical significance of each feature.

5.1 Settings

5.1.1 Prediction tasks

We designed prediction tasks to explore customers’ revisit behaviors. The first task is a
binary classification task to predict customers’ revisit intention RVbin. The second task is a
regression task to predict the revisit interval RVdays between two consecutive visits. For each
task, we conducted experiments on two different data subsets. First, we see the performance
of our model on the entire customer dataset. Second, we used a dataset consisting of only
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the first-time visitors to show that our prediction framework is effective in determining the
willingness of first-time visitors to revisit.

5.1.2 Scoring metrics

We used two scoring metrics: accuracy and root-mean-squared error (RMSE) for the classi-
fication and regression tasks, respectively.

• The accuracy is the ratio of the number of correct predictions to that of all predictions.We
used it for the classification task because it is considered to be the most intuitive metric
for store managers and practitioners. To fairly compare the model performance in seven
imbalanced datasetswith different revisit rates,we downsampled non-revisited customers
for each dataset. In this way, we designed the task as a binary classification on balanced
classes having 50% as a random baseline. To mitigate the risk of the sampling bias, we
prepared ten different downsampled train/test sets with random seeds. The averages of
ten executions were reported in the paper.

• The RMSE is measured between the actual interval and the predicted interval. To make
the RMSE values of seven stores with different data collection periods comparable, a
RMSE value was normalized by the length T of the data collection period. Because we
cannot calculate the revisit interval for the last visit, we excluded the customers’ last
visits for the regression task.

5.1.3 Data preparation

The training and testing data were prepared with three settings:

– S1: Fivefold cross-validation by dividing customers, where each customer data can be
included only in a single fold.

– S2: Fivefold cross-validation by dividing visits,5 where each visit is handled indepen-
dently.

– S3: First 50% visits as the training data, and other 50% as the testing data.

The accuracy difference between S1 and S2 was insignificant to the fourth decimal place. In
S3, there was an accuracy loss of about 2.5% on average compared to S1 and S2, due to floor
plan changes of the stores and inaccurate labels caused by truncation in time (Sect. 5.3.1).
Because of the page limit, we report the main results using the configuration S1.

5.1.4 Classifier

All results described in this section were obtained using Python API of the XGBoost [4]
library that optimized the gradient boosting tree [5] framework. XGBoost gave the best per-
formance among logistic regression, decision trees, random forests, AdaBoost, and gradient
boosting trees implemented in the Python Scikit-learn [26] library. For this manuscript, we
also compared the performance with up-to-date boosting classifiers such as LightGBM [11]
and CatBoost [28], and LightGBM was 5.7 times faster than CatBoost with similar perfor-
mance. To further improve performance, we also tried a two-level stacking by incorporating
the top-3 individual models, but the performance improvement was marginal. We add the
results of the non-best models in “Appendices A and B” to avoid breaking the original flow.

5 As a result of Sect. 4.2.3, our model is considered to be safe to perform cross-validation.
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Table 4 Performance of classification and regression tasks

ID Length # features Cust-type # data (# revisitors) Accuracy RMSE

A_GN 222 256 First 99,497 (9514) 0.6336 0.2132

All 112,672 (13,222) 0.6689 0.2000

A_MD 220 328 First 223,103 (47,917) 0.6930 0.1865

All 327,940 (104,913) 0.7412 0.1622

E_GN 300 866 First 144,610 (21,701) 0.6663 0.1862

All 183,246 (38,817) 0.7050 0.1627

E_SC 373 663 First 172,551 (41,036) 0.6818 0.1824

All 270,366 (98,818) 0.7288 0.1475

L_GA 990 244 First 838,241 (107,925) 0.7173 0.1403

All 1,062,226 (225,409) 0.7789 0.1244

L_MD 747 220 First 1,154,486 (197,476) 0.6799 0.1416

All 1,718,359 (566,701) 0.7991 0.1146

O_MD 698 316 First 1,033,253 (294,949) 0.6645 0.1311

All 2,008,384 (978,699) 0.7599 0.1028

We used all features for training and testing the model, since using all features gives the
best performance and the boosting tree classifier is robust to potential correlations between
features. The elapsed time for each fold with 200,000 visits and 660 features took no longer
than 1min in a single machine (Intel i7-6700 with 16GB RAM, without GPU).

5.2 Results

5.2.1 Overall results

Table 4 shows the overall accuracy and RMSE. First, the prediction accuracy for first-time
visitors is 67% averaged over seven stores. By only using mobility data captured by in-store
sensors, two out of three customer’s revisit is predictable without having any historical data
in the store. Second, the average prediction accuracy increases to 74% by considering all cus-
tomers. Third, the stores with a long data collection period and abundant user logs generally
show high performance, while this trend might not happen depending on the characteristics
of the stores.

5.2.2 Predictive power of feature groups

Figure 7a investigates the predictive power of each group of features in store E_SC. Each
bar corresponds to the prediction results using the features of only a specific group. The
labels of the x-axis are the abbreviations of the feature groups categorized in Table 2. For
the convenience of comparison, the leftmost bar on the figure represents the results when all
features in Table 4 are used. It was observed that the store accessibility [SA] features have
the strongest predictive power, especially for the prediction with all visitors, followed by the
upcoming event [UE] features for the first-time visitors.

123



1020 S. Kim, J.-G. Lee

(a) On feature groups. (b) On semantic levels.

Fig. 7 Performance comparison on feature groups and semantic levels (store E_SC)

5.2.3 Predictive power of semantic levels

As opposed to our intuition, a performance of semantic levels inside the store did not boost
the performance that much. As in Fig. 7b, the performance of the features generated from the
category level (T2) only beats the features from the sensor level (T1). Besides, the semantic
trajectories generated from the floor-level (T3) and the gender level (T4) were not effective to
predict customer revisit in the store E_SC. We can conclude that finding effective trajectory
abstraction is difficult even if the hierarchical information is provided.

5.2.4 Performance improvement by analyzing trajectories

To measure the performance improvement using our features, we developed two different
baselines for comparison. The first baseline is a theoretical lower bound of the prediction
accuracy obtained from revisit statistics, shown in Fig. 2. Since we fully ignored any other
information here, the prediction accuracywith this limited informationmust be lower than that
of using full trajectories. The procedure of deriving lower bounds is given in “Appendix C”.

The second baseline is amodel towhich the visit date is added. Since our task utilizes finite
time series datasets with time-dependent objectives, the earlier collected logs tend to have a
relatively high revisit rate. Therefore, by including a visit date as an additional feature, the
baseline accuracy improves naturally. If there existed infinite data, the performance increase
by this factor would disappear. The benefit of using customer mobility can be considered as
the gap between our final model and the second baseline.

Figure 8 reports the accuracy of our model6 against two baselines. We note that our
final model is more effective than the second baseline by 4.7–11.6% in terms of accuracy.
Among the first-time visitors, the effectiveness of trajectory analysis increases, showing a
performance improvement of 8.0–24.3%.

5.2.5 Prediction accuracy according to the number of visits

For further analysis, we measured the prediction accuracy for each customer group deter-
mined by their number of visits. For this experiment, we used the model trained on all
customers.

Customers who visit more than a certain number of times usually have a high chance to
revisit. Thus, we expect that our model can predict their revisits with high accuracy. The

6 For this experiment, we included visit count and date to our feature set, so the overall accuracy is slightly
higher than the values reported from Table 4.
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(a) On all visitors. (b) On first-time visitors.

Fig. 8 Effectiveness of analyzing customer trajectories

Table 5 Prediction accuracy (%) conditionally measured on groups of customers with the same number of
visits

Store ID A_GN A_MD E_GN E_SC L_GA L_MD O_MD

# Visits

v1 0.661 0.741 0.681 0.716 0.763 0.778 0.758

v2 0.732 0.735 0.716 0.691 0.795 0.773 0.706

v3 0.824 0.786 0.791 0.751 0.840 0.848 0.757

v4 0.856 0.808 0.845 0.800 0.848 0.879 0.801

v5 – 0.803 0.865 0.831 0.847 0.885 0.820

v6 – 0.810 0.884 0.852 0.846 0.883 0.829

v7 – 0.808 0.907 0.861 0.856 0.879 0.834

v8 – 0.814 0.911 0.866 0.836 0.878 0.838

v9 – 0.802 0.903 0.875 0.863 0.874 0.837

v10 – 0.789 – 0.900 0.867 0.870 0.839

We only reported the result where |vn | ≥ 50 on the test set

results in Table 5 confirm this expectation. As customers visited more often, the prediction
accuracy tended to increase in all stores. Interestingly, we found that the prediction accuracy
sometimes was the lowest in the case of v2 since those groups of customers seemed to have
the most uncertain behavior on their revisits.

Table 6 shows the improvement of ourmodel comparedwith the twobaselines inSect. 5.2.4
for each customer group. It indicates that our model is more effective than the baselines by
over 10%, especially on v1 and v2. Thus, our feature set is shown to be effective in predicting
customers’ revisits even when they are newcomers.

5.3 Discussions

5.3.1 Importance of data collection period

We are wondering how much the model’s performance varies depending on the amount of
data. Figure 9a shows that the overall prediction accuracy increases as the length of the data
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Table 6 Improvement of our model against the two baselines

Store ID A_GN A_MD E_GN E_SC L_GA L_MD O_MD

# Visits

v1 18.6/7.7 17.1/14.7 12.9/9.1 10.4/7.1 18.2/17.6 10.5/10.4 7.6/7.4

v2 4.9/1.2 13.5/5.0 7.5/2.0 15.1/3.1 4.6/3.0 18.4/12.5 29.7/13.0

v3 1.7/0.4 4.2/1.3 3.0/0.4 7.5/1.3 0.9/0.3 2.5/1.2 8.0/3.5

v4 1.3/0.3 3.5/0.5 2.8/1.1 5.5/0.7 1.0/0.1 0.9/0.2 3.7/1.0

v5 – 3.2/0.3 1.3/−0.4 3.8/0.8 1.1/0.1 0.7/0.0 2.7/0.5

v6 – 2.3/0.2 1.6/0.8 3.3/0.4 1.3/0.2 0.8/0.0 2.4/0.2

v7 – 3.8/0.8 1.8/−0.1 2.7/1.0 1.3/0.3 0.8/0.0 2.2/0.2

v8 – 4.0/-0.2 1.7/0.5 2.4/0.0 1.4/0.2 1.2/0.0 2.2/0.2

v9 – 3.6/0.0 1.5/0.9 3.2/0.6 1.8/0.6 1.4/0.2 2.0/0.0

v10 – 3.1/0.0 – 2.1/0.2 0.9/0.2 1.6/−0.1 2.5/0.2

The first number represents the improvement of prediction accuracy over the first baseline, and the second
number represents the improvement over the second baseline
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(d) On first-time visitors, average revisit
rates decrease in some cases.

Fig. 9 Impact of the data collection period

collection period increases. The performance rapidly increases over the first fewmonths, and
then the increment is getting smaller. The main reason for the poor performance in the first
few months is the lack of information on revisiting customers. Therefore, the labels in the
training data could be inaccurate if we collected the information for an insufficient period. To
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(a) (b)

Fig. 10 Missing behaviors in noninvasively collected data. a Customers’ revisits were untraceable if they did
not have Wi-Fi turned on. b The actual group movement ratio observed from the store was 56% instead of
15.6% observed in the data. Researchers must not interpret the data as it is, when explaining the real behavior

confirm our conjecture, we also examined the proportion of customers’ revisit intention as
the data collection progressed, as in Fig. 9c. The proportion, E[RVbin(v)], indeed increased
as the data collection period increased. However, prediction accuracy on first-time visitors
did not always increase. We notice that the average revisit rate also decreases for those cases,
i.e., O_MD and L_MD, which implies that recently visited customers do not tend to revisit
the store. Overall, with a longer data collection period, performance improvement occurs by
having more positive cases for regular customers.

5.3.2 Real behavior and collected data—Are they same?

Noninvasively collected data is also limited, considering that not all users turn on Wi-Fi of
their mobile device. Since the 4G LTE connection is very fast and ubiquitous in Korea, the
proportion of ‘always-on’ users is just 30% [24]. This limitation implies that the datasetswere
missing some customer behaviors in the real world. Figure 10a shows untraceable revisits
due to the conditional Wi-Fi usage of the customer, and Fig. 10b shows a gap between the
actual/observed proportion of group movements caused by low Wi-Fi usage. The reason for
the difference is that both companions must use Wi-Fi to verify the accompanying records
on the data. px denotes the probability of customers who turn on Wi-Fi on-site (including
‘conditionally-on’ users), and py denotes the actual proportion of customers in a group of
size two. Here we ignore groups more than two customers, which are not that common. Then
the proportion pyo of group customers observed in the data can be represented as Eq. (1).

pyo = Observed(Group)

Observed(Group) + Observed(Individual)

= py(px )2

py(px )2 + 2py px (1 − px ) + (1 − py)px
= px py

1 + py − (px )2

(1)

Therefore, readers should recognize that the observed movement ratio can be very different
from the actual movement ratio. We leave additional details in “Appendix E” and briefly
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Fig. 11 Model robustness on missing customers

introduce how to utilize this gap to decide the 30s threshold to determine group move-
ments. In the future, if customers’ behaviors are more traceable with additional sensing
technologies, we believe that noninvasively collected data will better reflect actual customer
behaviors.

5.3.3 Performance on incomplete data

Assuming that some of the customers’ data are completely gone, is the performance of our
model reliable? We confirmed that over 95% of the performance of our model is maintained
with a very small fraction of the dataset (e.g., 0.5% for L_MD). For each store, we randomly
removed the records of a set of customers and measured the model performance using the
remaining data. Figure 11 shows the averages for 20 different executions. The accuracy loss
of the model was within 3% if 10,000 visits were secured. This observation can be also
interpreted as follows:

– For large-scale mobility data, a comparable prediction model can be built by using small
data subsets.

– On the other hand, we can estimate the prediction performance when all customer data
becomes traceable.

– High prediction accuracy of some stores may not be due to their large number of visitors.

5.3.4 Meaningful insights but low predictability

Wewould like to point out that securing prediction accuracy can be difficult although the dif-
ferences between revisitors and non-revisitors are obvious. Some feature values significantly
differ by the revisit status, each of which should be helpful to explain the difference between
the two groups. But from the perspective of a prediction task, the correlation coefficient was
relatively small, and the prediction accuracy using the feature was not very high.

In Table 7, the relative difference diff1 of feature values depending on the future revisit
status is noticeable (2.7–104.2%). Besides, the p value (p < 10−100) from Mann-Whitney
U test shows that the feature values of the two groups are from different distributions. From
another perspective, the relative difference diff2 in the average revisit rate between the top
5% and the bottom 5% of customers in terms of feature values also shows clear distinction
by 43.5–134.7%.
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Table 7 Statistics of feature values with revisit status, and their final predictability: statistics from the store
O_MD

Name Feature description Feature value difference by revisit status

FV1 FV0 diff1 (%) p value

fa Avg interarrival time (5m) 21.8 days 44.4 days 104.2 0∗∗∗∗
fb Total dwell time 3211s 1612s 99.2 0∗∗∗∗
fc Dwell time proportion in 3rd area 0.112 0.087 28.5 0∗∗∗∗
fd Avg dwell time for each area 358s 348s 2.7 0∗∗∗∗

Revisit rate difference by feature values rpb Accuracy

max(RVbin) min(RVbin) diff2 (%)

fa 0.841 0.358 134.7 −0.207 0.7346

fb 0.721 0.335 115.2 0.216 0.6005

fc 0.622 0.335 85.8 0.152 0.6035

fd 0.588 0.410 43.5 0.007 0.5584

FV1 = E[FV (v)|RVbin(v) = 1]: Average feature values of revisitors, rpb: Point-biserial correlation. The
details of the four feature values can be found in Fig. 12

Fig. 12 Detailed relationship between four features and E[RVbin(v)] mentioned in Table 7

However, the correlation coefficient and the final prediction accuracy using the feature are
not as impressive as diff1 and diff2. Practitioners should note that the behavioral difference
between the two groups is obvious and the p value is high, but not in terms of the metric of
correlation and prediction accuracy. Also, the feature should not be discarded because of the
low correlation coefficient. If the feature has a nonlinear tendency, its predictive power can
be strong. The statistics of fb and fc in Table 7 confirms our argument. We assert that our
high-quality prediction came from a combination of various kinds of features which behave
differently.
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6 Related work

Predictive analytics using trajectories. Next location prediction using trajectories is one of
the most actively studied topics in the computer science community. To predict the next
location, frequent trajectory patterns [7,23], nonlinear time series analysis of the arrival and
residence time [31], the hidden Markov model (HMM) [22], and cluster-based prediction
with semantic features [44] were applied. Performances of many approaches were compared
by Baumann et al. [1], and the data sparsity problem was handled by Xue et al. [39]. The
results support that the prediction of the next location using partial trajectories is feasible,
along with the regularity studies of human mobility [6,19,33]. Within the subject of predict-
ing the next location, the prediction of the final destination of a taxi [2,3,20] has been also
actively studied since the 2015 ECML/PKDD competition.7 The main difference between
our study and previous studies is the prediction objective. We studied the customers’ revisit
intentions in the off-line stores using indoor trajectories. Thus, our model focused on pre-
dicting revisits instead of locations. As far as we know, there is no study of predicting revisit
intention using large-scale trajectories captured by in-store sensors.

Customer behavior in the store. Park et al. [25] examined the factors of route choice in three
clothing outlets by tracking 484 customers. They considered spatial characteristics of the
outlet, types of customers, and their shopping behaviors. In the grocery store, an RFID-based
tracker system with shopping carts enabled Hui et al. [8] to find some interesting causality
such as consumers who spentmore time in the grocery store becomemore purposeful, or after
purchasing virtue categories, the presence of other shoppers attract consumers yet reduce their
tendency for purchase. Yada [40] applied a character string analysis technique, EBONSAI,
originally developed in the field of molecular biology. They converted each shopping area
into a character to applied their algorithm in order to discover purchasing behaviors. Hwang
and Jang [9] introduced process mining techniques to understand customer pathways. The
Petri-net model learned by inductive learning algorithms provides a formal representation
of the shopping path of customers. With the collaboration between sensor providers and
their clients, they showed that customers’ behavioral patterns and sales revenue changed in
accordance with process models and store layouts. This study also utilized the Kolon store
dataset collected by ZOYI, a data provider of our seven stores. Although these studies did not
focus on customers’ revisit, they were valuable resources for us to develop the features that
describe customers’ motion patterns. Currently, Alibaba’s Hema Xiansheng8 and Amazon
Go9 are the most widely known future retailers, breaking the traditional retail experience.
Because of the abundant in-store data from these retailers, we expect that there will be
tremendous opportunities to study customer behavior patterns during their shopping time.

Indoor analysis in other places. Traditionally, the analysis of customers’ indoor movement
and connections to space has been conducted in the area of architecture or interior design.
Especially for museums, various movement patterns were tracked manually [16,41] to rear-
range the exhibits to enhance the satisfaction of visitors [10]. For example, the extent of
visibility of the display was studied [17] to arrange the main display by using the behavior of
passive visitors [10]. They concluded that visitors are influenced by the continuity in display
within their view.With the help of noninvasivemonitoring, visitor studies in themuseumhave
come to a new phase. Yoshimura et al. [45] installed eight beacons in the Louvre Museum

7 http://bit.ly/kaggle_taxi_interview_1st_nn.
8 https://www.freshhema.com/.
9 https://en.wikipedia.org/wiki/Amazon_Go.
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and analyzed the most popular paths to mitigate a micro-congestion inside the museum. By
tracking visitors’ movements, the GuggenheimMuseum10 increased customers’ engagement
by making smarter curatorial decisions. Both museums and stores are the places where cus-
tomers’ indoor mobility data can be meaningful for the study of customer satisfaction. Thus,
we expect that our framework is also applicable to the museum visitor studies.

7 Conclusions

Various retail analytics companies have set up sensors to monitor customer mobility in off-
line stores. Although it was difficult to connect with other kinds of data because of legal
issues, we confirmed that customer mobility indeed involves diverse meanings. Without hav-
ing access to customer purchase data or customer profile, we have found that revisit intention
of customers are predictable by up to 80%, using only Wi-Fi signals collected by in-store
sensors. Toward this goal, we suggested guidelines for setting the collection period of indoor
data for revisit prediction. We also showed our model is robust even if a majority of customer
data is missing. Moreover, we demonstrated that significant observations may be in disagree-
ment with the final predictive power. We expect that our findings will help data scientists and
marketers from both retail analytics companies and their clients make important decisions.
In the future, we plan to discover additional aspects of revisits from inter-store mobility with
an advanced model to learn the customer revisit mechanism.

Acknowledgements This work was supported by the National Research Foundation of Korea (NRF) grant
funded by theKorea government (Ministry of Science and ICT) (No. 2017R1E1A1A01075927).We appreciate
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A. Comparison on various classifiers

We compared the performances of eight classifiers. We used default parameter settings for
classifiers and some tuned parameters are listed below.

– Classifiers provided by Scikit-learn [26].11 The parameters used are summarized as
follows.

• LR (Logistic Regression): default settings.
• DT (Decision Tree): max_depth = 4.
• RF (Random Forests): n_estimator = 10.
• AB (AdaBoost): default settings.
• GB (Gradient Boosting): max_depth = 4.

– Up-to-date boosting classifiers:

• CAB (CatBoost): depth = 4, learning_rate = 0.1, iterations = 30.
• XGB (XGBoost): max_depth = 4, learning_rate = 0.1.
• LGB (LightGBM): max_depth = 4, learning_rate = 0.1.

Figure 13 summarizes the comparison results for the eight classifiers in terms of prediction
accuracy and running time. To obtain stable results, we repeated fivefold cross-validation 25

10 http://bit.ly/Guggenheim_App.
11 Scikit-learn 0.20, which is the latest version at the time of this submission, was used for the experiments.
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Fig. 13 Comparison between classifiers. LGB turns out to be themost effective among all classifiers. aAverage
accuracy on all experiments, b average running time on all experiments

times and then reported the averages by aggregating the results of the seven stores. As a result,
LGB turned out to be the fastest classifier among the three best-performing classifiers—GB,
XGB, and LGB. CABwas very fast as well as gave comparable results. Interestingly, DT took
more time thanRF and showed a better result in the default setting. Table 8 shows the details of
Fig. 13 by showing the accuracy for each of the seven stores. Themean and standard deviation
were calculated from the average accuracies of 25 different fivefold cross-validations.

B. Comparison on stackingmodels

To achieve additional performance improvement, we applied stacking (meta ensembling)
with eight strategies. Stacking is a model ensembling technique used to combine multiple
predictive models to generate a better model [38]. Usually, the stacked model is known to
outperform each of the individual models owing to its smoothing nature and its ability to
highlight each base model. The main point of the stacking is to utilize the prediction results
of the base models as features for the stacking model in the second layer.

To do this, we selected CAB, XGB, and LGB as the base models. We further separated
a training set into three subsets and used two subsets to make the prediction labels for the
remaining subset. The prediction labels for the testing set were also calculated together
three (=3C2) times, and the three sets of the labels for the testing set were averaged for the
final use. In this way, we generated the label features for both training and testing sets. These
additional features are fed to the final LGB stacking model. We followed a general procedure
from the reference12 and added three options. Figure 14 illustrates the process of creating
eight stacking models (M1–M8) through the choice of the three options. The description of
the three options is as follows.

– Sampling strategy: A parameter that determines whether to use either random oversam-
pling [15] or downsampling. This option is not directly related to the stacking, but we
added it to improve the accuracy by treating the class imbalance problem.

12 http://bit.ly/Kaggle_Guide_Stacking.
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Sampling strategy

M1

Yes

M2

No

One

M3

Yes
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No

Many

Downsampling

M5

Yes

M6

No

One

M7

Yes

M8

No

Many

Oversampling

# of predictions

Using only labels

Fig. 14 Stacking options

– # of predictions: A parameter that determines whether to use one model or multiple
models for each fold. The former case generates a single additional feature, and the latter
case generates three additional features.

– Using only labels: A parameter that determines whether to use only the prediction
labels (one or three features) or to use all existing features with the prediction labels (n+1
or n+3 features where n is the total number of hand-engineered features used).

Table 9 shows the average accuracy results obtained for each of the seven stores in details.13

We observed that the performance improvement was not so high despite the long running
time of the stacking model. Thus, we conjecture that each of the best-performing classifiers
achieved almost the highest accuracy by itself.

C. Lower bounds of prediction accuracy

The visit logs vk with the same visit count k are considered to have the same information. To
maximize the accuracy, we must predict the label l of vk by the following criteria:

∀v : l(v ∈ vk) =
{
1, if E[RVbin(vk)] ≥ 1/2

0, otherwise.
(2)

Considering each proportion pk = |vk |/∑
k |vk | and simplifying E[RVbin(vk)] as rk , the

lower bound accuracy of a model can be represented as LB = ∑
k pk · max(rk, 1 − rk). In

the experiment of only first-time visitors, LB = 1/2 since p1 = 1 and r1 = 1/2.
The interpretation with the lower bound is as follows. For higher predictability, the revisit

tendency of each vk should be homogeneous. In Fig. 15, we can notice that store L_MD is
more predictable than A_GN, because |rk − 0.5| of L_MD is larger than that of A_GN for
the majority of k.

13 We ran another five sets of fivefold cross-validation for this experiment. Thus, the values of the baselines
in Table 9 are slightly different from those in Table 8 within the margin of error.
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Less predictable

(a) (b)The case of a less

More predictable

The case of a more

predictable store with LB 0.595. predictable store with LB 0.741.

Fig. 15 Lower bound accuracies of two stores

D. Assumptions to interpret the data

Here, we would like to clarify how we count the first-time visitors and explain several
underlying assumptions to consider.

– Assumption 1: Because we do not know whether customers visited a store before data
was collected, we simply assume that the customers did not visit before the collection
period. We believe that this assumption is reasonable because the stores in which we
collected the data were relatively new at that time we began data collection.

– Assumption 2: Because customers are captured only when they turn on theWi-Fi of their
mobile device, we assume that the customers’ Wi-Fi turn on behavior is consistent when
they visit the store. Also, we assume that there is no correlation between Wi-Fi usage
and customer groups (first-time visitors and VIP customers).

– Assumption 3: We assume that customers visit the store with a device having the same
MAC address. For this purpose, we retained only Android devices but removed Apple
devices in the preprocessing step, because the later versions of iOS 8.0 follow a MAC-
address randomization policy [21] whichmakes infeasible to identify the same customer.

Rigorously speaking, the proportion of true first-time visitors would be less than 70% by
considering all the effects explained above. Nevertheless, these customers are also likely to
be early stage visitors.

E. Deciding the groupmovement threshold

We decided 30s group movement threshold by the following logic. According to our obser-
vation at store E_GN in the afternoon of June 24 and June 26, 2017, 56% of 105 customers
entered the store with their companions, which was more than half. Considering px = 39.2%
as the on-site Wi-Fi turn on rate (Always-on: 29.2%, Conditionally-on: 10%) [24] and
py = 56% as the actual proportion of customers in a group, we expected that pyo = 15.5%
of the total visitors were represented as having companions in our collected data of store
E_GN (by Eq. 1 in Sect. 5.3.2). By setting 30s as a threshold of accompaniment, we also
obtained 15% of the total visitors were considered as having companions in the same data.
By considering a gap between actual group ratio and observed group ratio, we claim that 30 s
is an appropriate threshold to distinguish group movement.
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